[1]
Ichikawa T, Nakazawa M, Kawashima M et al. The FOX hunting system: an
alternative gain-of-function gene hunting technique[J]. Plant J,
2006,48:974-985.
[2] 王道杰,杨翠铃,柴冬梅等. 油菜抗逆基因相关基因FOX拟南芥文库构建[J]. 植物生理学报, 2015,51(08):1257-1264.
[3]
Breuer C, Kawamura A, Ichikawa T et al. The trihelix transcription factor GTL1 regulates
ploidy-dependent cell growth in the Arabidopsis trichome[J]. Plant Cell,
21:2307-2322.
[4]
Smalle J, Kurepa J, Hacgman M et al. The trihelix DNA-binding motif in higher
plants is not restricted to the transcription factors GT-1 and GT-2[J]. Proc
Natl Acad Sci U S A, 1998, 95(6):3318-3322.
[5]
Kondou Y, Higuchi M, Takahashi S et al. Systematic approaches to using the FOX
hunting system to identify useful rice genes[J]. Plant J, 2009, 57:883-894.
[6]
Sakurai T, Kondou Y, Akiyama K et al. RiceFOX: a database of Arabidopsis mutant
lines overexpressing rice full-length cDNA that contains a wide range of trait
information to facilitate analysis of gene function[J]. Plant Cell Physiol,
52:265-273.
[7]
Nakamura H, Hakata M, Amano K et al. A genome-wide gain-of-function analysis of
rice genes using the FOX-hunting system[J]. Plant Mol. Biol, 2007,65:357-371.
[8]
Sato T, Mackawal S, Yasudal S et al. CNI1/ATL31, a RING-type ubiquitin ligase
that functions in the carbon/nitrogen response for growth phase transition in
Arabidopsis seedlings[J]. Plant J, 2009,60:852-864.
[9]
Fujita M, Mizukados, Fujita Y et al. Identification of stress-tolerance-related
transcription factor genes via mini-scale Full-length cDNA Over-eXpressor (FOX)
gene hunting system[J]. Biochem Biophys Res Commun, 2007,364:250-257.
[10]范永海,常玮,赵彬言等. 环境因素和嫁接方法对甘蓝型油菜幼苗嫁接成功率的影响[J]. 中国油料作物学报, 2018,40(4):516-523.
[11] Altschul S F, Gish W, Miller W et al. Basic
local alignment search tool[J]. Mol Biol, 1990,215:403-410.
[12] Altschul S F, Madden T L, Schäffer A A et al. Gapped
BLAST and PSI-BLAST: A new generation of protein database search programs[J]. Nucleic Acids Res. 1997,25:3389-3402.
[13] Chalhoub B, Denoeud F, Liu S et al.
Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome[J]. Science, 2014,345:950-953.
[14] Tian F, Yang D C, Meng Y Q et al. PlantRegMap:
charting functional regulatory maps in plants[J]. Nucleic Acids Res. 2020,D1:D1104-D1113.
[15] Zheng Y, Jiao C, Sun H et al. iTAK: A program for
genome-wide prediction and classification of plant transcription factors,
transcriptional regulators, and protein kinases[J]. Mol Plant, 2016,9:1667-1670.
[16]
Kolesnik T, Szeverenyi I, Bachmann D et al. Establishing an efficient Ac/Ds tagging system in rice: large-scale analysis of Ds flanking
sequences[J]. Plant J, 2004,37(2):301-314.
[17]
Piffanelli P, Droc G, Mieulet D, et al. Large-scale characterization of Tos17
insertion sites in a rice T-DNA mutant library[J]. Plant Mol. Biol, 2007,65(5)
:587 601.
[18]
Till B J, CooperJ, Tai T H et al. Discovery of chemically induced mutations in
rice by TILLING[J]. BMC Plant Biol, 2007,7:19-27.
[19]
AhnJ H, KimJ, Yoo S J et al. Isolation of 151 tents that have developmental
defects from T-DNA tagging[J]. Plant Cell Physiol, 2007,48(1):169-178.
[20]
Gao X H, Jia R Y, Wang M S et al. Construction and identification of a cDNA
library for use in the yeast two-hybrid system from duck embryonic fibroblast
cells post-infected with duck enteritis virus[J]. Mol Biol Rep,
2014,41(1):467-475.
[21]
Clarke L, and Carbon J. A colony bank containing synthetic Col EI hybrid
plasmids representative of the entire E. coli genome[J]. Cell,
1976,9(1):91-99.
[22]
Matz M V, Fradkov A F, Labas Y A et al. Fluorescent proteins from
nonbioluminescent Anthozoa species[J]. Nat Biotechnol, 1999,17(10):969-973.
[23]
Yanushevich Y G, Staroverov D B, Savitsky A P et al. A strategy for the
generation of non-aggregating mutants of Anthozoa fluorescent proteins[J]. FEBS
Lett, 2002,511:11-14.
[24]
Lauf U, Lopez P, Falk M M. Expression of fluorescently tagged connexins: a
novel approach to rescue function of oligomeric DsRed-tagged proteins[J]. FEBS
Lett, 2001,498:1-15
[25]
Aliaga-Franco N, Zhang C, Presa S et al. Identification of transgene-free
CRISPR-edited plants of rice, tomato, and Arabidopsis by monitoring DsRED fluorescence
in dry seeds[J]. Front Plant Sci, 2019,10:1150.
|