[1] 禹山林. 中国花生品种及其系谱[M]. 上海:上海科学技术出版社,
2008.
[2] 万书波. 花生产业形势与对策[J]. 山东农业科学.
2014, 46(10): 128-132.
[3] Milla S R, Isleib T G, Stalker H T. Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers. Genome, 2005, 48(1): 1-11.
[4] Yin D M, Wang Y, Zhang X G, et al. Development of chloroplast genome
resources for peanut (Arachis hypogaea L.) and other species of Arachis [J]. Scientific Reports, 2017, 7(1): 11649.
[5] 姜慧芳, 任小平, 王圣玉, 等. 野生花生高油基因资源的发掘与鉴定[J]. 中国油料作物学报,
2010, 32(01): 34-38.
[6] Krapovickas A, Gregory W C, Williams D E, et al. Taxonomy of the genus Arachis (Leguminosae) [J]. Bonplandia,
2007, 16: 7-205.
[7] Gimenes M A, Lopes C R, Valls J F M. Genetic relationships among Arachis species based on AFLP[J].
Genetics and Molecular Biology, 2002, 25.
[8] Moretzsohn M C D, Hopkins M S, Mitchell S E, et al. Genetic diversity of
peanut (Arachis hypogaea L.) and its
wild relatives based on the analysis of hypervariable regions of the genome[J].
BMC Plant Biology, 2004, 4(1): 11.
[9] Tallury S P, Hilu K W, Milla S
R, et al. Genomic affinities in Arachis section Arachis (Fabaceae): molecular
and cytogenetic evidence[J]. Theoretical and Applied Genetics, 2005,
111(7):1229-1237.
[10] Barkley N A, Dean R E, Pittman
R N, et al. Genetic diversity of cultivated and wild-type peanuts evaluated
with M13-tailed SSR markers and sequencing[J]. Genetic research, 2007, 89(2):
93-106.
[11] Bechara M D, Moretzsohn M C,
Palmieri D A, et al. Phylogenetic relationships in genus Arachis based
on ITS and 5.8 S rDNA sequences[J]. BMC Plant Biology. 2010, 10: 255.
[12] Friend S A, Quandt D, Tallury
S P, et al. Species, genomes, and section relationships in the genus Arachis (Fabaceae): a molecular
phylogeny[J]. Plant Systematics & Evolution, 2010, 290(1-4): 185-199.
[13] Wang C T, Wang X Z, Tang Y Y, et
al. Phylogeny of Arachis based on
internal transcribed spacer sequences[J]. Genetic Resources and Crop Evolution,
2011, 58: 311-319.
[14] Moretzsohn M C, Gouvea E G,
Inglis P W, et al. A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely
related wild species using intron sequences and microsatellite markers[J]. Annals
of Botany, 2012, 111(1):113-26.
[15] Huang L, Jiang H, Ren X, et al.
Abundant microsatellite diversity and oil content in Wild Arachis species[J]. PLoS ONE, 2012, 7(11): e50002
[16] Vishwakarma M K, Kale S M,
Sriswathi M, et al. Genome-wide discovery and deployment of insertions and
deletions markers provided greater insights on species, genomes, and sections
relationships in the genus Arachis[J].
Frontiers in Plant Science, 2017, 8: 2064.
[17] Schwarz E N, Ruhlman T A,
Sabir J S M, et al. Plastid genome sequences of legumes reveal parallel
inversions and multiple losses of rps16 in papilionoids[J]. Journal of
Systematics & Evolution, 2015, 53(5): 458-468.
[18] Prabhudas S K, Prayaga S,
Madasamy P, et al. Shallow Whole genome sequencing for the assembly of complete
chloroplast genome sequence of Arachis
hypogaea L[J]. Frontiers in Plant Science, 2016, 7.
[19] Wang J, Li C J, Yan C X, et al.
A comparative analysis of the complete chloroplast genome sequences of four
peanut botanical varieties[J]. Peer J, 2018, 6(4):e5349.
[20] Wang J, Li Y, Li C, et al.
Twelve complete chloroplast genomes of wild peanuts: great genetic resources
and a better understanding of Arachis phylogeny[J]. BMC Plant Biology, 2019, 19(1): 504.
[21] Rozas J, Ferrer-Mata A,
Sánchez-DelBarrio J C, et al. DnaSP 6: DNA Sequence Polymorphism Analysis of
Large Datasets[J]. Molecular biology and evolution, 2017, 34: 3299-3302.
[22] Stalker H T. Utilizing Wild
Species for Peanut Improvement[J]. Crop Science, 2017, 57(3).
[23] Leal-Bertioli S C, Santos S P,
Dantas K M, et al. Arachis batizocoi:
a study of its relationship to cultivated peanut (A. hypogaea) and its potential for introgression of wild genes into
the peanut crop using induced allotetraploids[J]. Annals of Botany, 2015,
115(2): 237-249.
[24] Yin D M, Zhang X G, Ma X L, et
al. Genome of an allotetraploid wild peanut Arachis monticola : a de novo assembly[J]. The Crop Science Society of
China, 2019:295.
[25] Zhuang W, Chen H, Yang M, et
al. The genome of cultivated peanut provides insight into legume karyotypes,
polyploid evolution and crop domestication[J]. Nature Genetics, 2019, 51(5):
865–876.
[26] Yin D, Ji C, Song Q, et al.
Comparison of Arachis monticola with diploid
and cultivated tetraploid genomes reveals asymmetric subgenome Evolution and
Improvement of Peanut[J]. Advanced Science, 2019, 7(4): 1901672.
|