[1]
Huang Z, Zhao N, Qin M, et al. Mapping of quantitative trait loci related to
cold resistance in Brassica napus L[J]. J Plant Physiol, 2018, 231: 147-154. DOI:10.1016/j.jplph.2018.09.012.
[2] Gaupels F, Durner J, Kogel K H.
Production, amplification and systemic propagation of redox messengers in
plants? The phloem can do it all![J]. New Phytol, 2017, 214(2): 554-560.
DOI:10.1111/nph.14399.
[3] Rasmann S, De Vos M, Casteel C L, et al.
Herbivory in the previous generation primes plants for enhanced insect
resistance[J]. Plant Physiol, 2012, 158(2): 854-863. DOI:10.1104/pp.111.187831.
[4] Torres M A, Dangl J L. Functions of the
respiratory burst oxidase in biotic interactions, abiotic stress and
development[J]. Curr Opin Plant Biol, 2005, 8(4): 397-403. DOI:10.1016/j.pbi.2005.05.014.
[5] Suzuki N, Miller G, Morales J, et al.
Respiratory burst oxidases: the engines of ROS signaling[J]. Curr Opin Plant
Biol, 2011, 14(6): 691-699. DOI:10.1016/j.pbi.2011.07.014.
[6] Tripathi D K, Singh S, Singh S, et al.
Nitric oxide alleviates silver nanoparticles (AgNps)-induced phytotoxicity in Pisum sativum seedlings[J]. Plant
Physiol Biochem, 2017, 110: 167-177. DOI:10.1016/j.plaphy.2016.06.015.
[7] Yang S, Yu Q, Zhang Y, et al. ROS: the
fine-tuner of plant stem cell fate[J]. Trends Plant Sci, 2018, 23(10): 850-853.
DOI:10.1016/j.tplants.2018.07.010.
[8] Zhao Y, Luo L, Xu J, et al. Malate
transported from chloroplast to mitochondrion triggers production of ROS and
PCD in Arabidopsis thaliana[J]. Cell
Res, 2018, 28(4): 448-461. DOI:10.1038/s41422-018-0024-8.
[9] Raja V, Majeed U, Kang H, et al. Abiotic
stress: Interplay between ROS, hormones and MAPKs[J]. Environ Exp Bot,
2017, 137: 142-157. DOI:10.1016/j.envexpbot.2017.02.010.
[10] 代宇佳, 罗晓峰, 周文冠, 等. 生物和非生物逆境胁迫下的植物系统信号[J]. 植物学报, 2019, 54(2):
255-264. DOI:10.11983/CBB18152.
[11] Liu B, Zhao S, Tan F, et al. Changes in
ROS production and antioxidant capacity during Tuber sprouting in potato[J].
Food Chem, 2017, 237: 205-213. DOI:10.1016/j.foodchem.2017.05.107.
[12] 杨颖丽, 吕丽荣, 徐玉玲, 等. 胞间活性氧产生对盐胁迫下两种小麦叶抗氧化反应的影响[J]. 兰州大学学报: 自然科学版, 2019, 55(4):
476-484. DOI:10.13885/j.issn.0455-2059.2019.04.009.
[13] 张金尧. 活性氧介导缺锌胁迫下玉米根系生长发育的研究[D]. 武汉: 华中农业大学,
2019.
[14] Dolzblasz A, Smakowska E, Gola E M, et
al. The mitochondrial protease AtFTSH4 safeguards Arabidopsis shoot apical
meristem function[J]. Sci Rep, 2016, 6: 28315. DOI:10.1038/srep28315.
[15] 孙万仓, 武军艳, 方彦, 等. 强抗寒性白菜型冬油菜品种‘陇油9号’的选育[J]. 甘肃农业大学学报, 2013(6):
52-58.
[16] Wang C, Zhang S, Wang P, et al. Salicylic
acid involved in the regulation of nutrient elements uptake and oxidative
stress in Vallisneria natans (Lour.) Hara under Pb stress[J]. Chemosphere,
2011, 84(1): 136-142. DOI:10.1016/j.chemosphere.2011.02.026.
[17] 李萍, 胡喆, 马今方, 等. 拟南芥茎顶端分生组织相关突变体的表型与结构分析[J]. 西北植物学报,
2007,
27(2):
228-232.
DOI:10.3321/j.issn: 1000-4025.2007.02.003.
[18] 柴靓, 何靖, 高志宏, 等. 植物叶片发育及形态建成的研究进展[J]. 种子, 2018, 37(3):
46-48. DOI:10.16590/j.cnki.1001-4705.2018.03.046.
[19] Malamy J E, Benfey P N. Organization and
cell differentiation in lateral roots of Arabidopsis
thaliana[J]. Dev Camb Engl, 1997, 124(1): 33-44.
[20] 高晓霞. 内源NO和活性氧对小麦幼苗生理特性调控的研究[D]. 兰州: 西北师范大学, 2017.
[21] 李媛. 杨树UPB1基因调控树木生长速度的分子机制[D]. 哈尔滨: 东北林业大学,
2017.
[22] Kranner I, Roach T, Beckett R P, et al.
Extracellular production of reactive oxygen species during seed germination and
early seedling growth in Pisum sativum[J].
J Plant Physiol, 2010, 167(10): 805-811. DOI:10.1016/j.jplph.2010.01.019.
[23] 韩晓宁, 马婧怡, 郭惠红. 植物干细胞功能的分子调控研究进展[J]. 中国科学: 生命科学, 2020, 50(2):
187-195.
DOI:10.1360/SSV-2019-0147.
[24] Tsukagoshi H, Busch W, Benfey P N.
Transcriptional regulation of ROS controls transition from proliferation to
differentiation in the root[J]. Cell, 2010, 143(4): 606-616. DOI:10.1016/j.cell.2010.10.020.
[25] Huang L, Yu L J,
Zhang X, et al. Autophagy regulates glucose-mediated root meristem activity by
modulating ROS production in Arabidopsis[J].
Autophagy, 2019, 15(3): 407-422. DOI:10.1080/15548627.2018.1520547.
[26] 王永顺. 伤信号活性氧在拟南芥下胚轴插条中的产生、传导及作用机制研究[D].西安: 陕西师范大学, 2016.
[27] Jones A. Does the plant mitochondrion
integrate cellular stress and regulate programmed cell death?[J]. Trends Plant
Sci, 2000, 5(5): 225-230. DOI:10.1016/s1360-1385(00)01605-8.
[28] 张腾国, 赖晶, 李萍, 等. 不同处理下油菜RbohA、RbohD基因的表达特性分析[J]. 生态学杂志, 2019,
38(1):
173-180. DOI:10.13292/j.1000-4890.201901.024.
[29] Barceló A R, Laura V G R. Reactive oxygen
species in plant cell walls[M]// Reactive oxygen species
in plant signaling. Berlin, Heidelberg: Springer Berlin Heidelberg,
2009: 73-93. DOI:10.1007/978-3-642-00390-5_5.
[30] Sarsour E H, Venkataraman S, Kalen A L,
et al. Manganese superoxide dismutase activity regulates transitions between
quiescent and proliferative growth[J]. Aging Cell,
2008, 7(3): 405-417. DOI:10.1111/j.1474-9726.2008.00384.x.
[31] Miller G, Suzuki N, Ciftci-Yilmaz
S, et al. Reactive oxygen species homeostasis and signalling during drought and
salinity stresses[J]. Plant Cell Environ,
2010, 33(4): 453-467. DOI:10.1111/j.1365-3040.2009.02041.x.
[32] Mittler R, Vanderauwera S, Suzuki N, et
al. ROS signaling: the new wave?[J]. Trends Plant Sci,
2011, 16(6): 300-309. DOI:10.1016/j.tplants.2011.03.007.
[33] Lucas W J, Groover A, Lichtenberger R, et
al. The plant vascular system: evolution, development and functions[J]. J
Integr Plant Biol, 2013, 55(4): 294-388. DOI:10.1111/jipb.12041.
[34] Xuan W, Beeckman T, Xu G. Plant nitrogen
nutrition: sensing and signaling[J]. Curr Opin Plant Biol, 2017, 39: 57-65.
DOI:10.1016/j.pbi.2017.05.010.
[35] 夏超. 信使RNA长距离移动和韧皮部伴胞特异性转录翻译组学研究[D]. 雅安: 四川农业大学,
2018.
[36] Kong L G,
Wang F H,
Si J S,
et al. Increasing in ROS levels and callose deposition in peduncle vascular
bundles of wheat (Triticum aestivum L.) grown under nitrogen deficiency[J]. J Plant Interactions, 2013, 8(2): 109-116.
DOI:10.1080/17429145.2012.712723.
[37] Notaguchi M, Okamoto S. Dynamics of
long-distance signaling via plant vascular tissues[J]. Front Plant Sci, 2015,
6: 161. DOI:10.3389/fpls.2015.00161.
[38] 郑湘如, 王希善编译. 植物解剖结构显微图谱[M]. 北京: 农业出版社, 1983.
|