
Estimation of oleic acid content in Brassica napus seeds based on hyperspectral data
Rong-cai TIAN, Jun-wei LU, Chun-yun GUAN
CHINESE JOURNAL OF OIL CROP SCIENCES ›› 2022, Vol. 44 ›› Issue (1) : 190-200.
Estimation of oleic acid content in Brassica napus seeds based on hyperspectral data
In order to find the most typical characteristics part of rapeseed on its oleic acid content hyperspectral estimating in Brassica napus L., 44 germplasm resources with high oleic acid content were used as materials. Spectral reflectance of seed and its oleic acid data were collected according to an order of main stem, primary branch, and secondary branch. The data were analyzed on relationship between seed oleic acid contents and original & first derivative spectral reflectance of different parts. Estimation model as stepwise multiple linear regression, partial least squares regression (PLSR), and principal component regression were established based on full wavelength and characteristic wavelength. Univariate linear regression model was established based on spectral index. And then, determination coefficient (R2), root mean square error (RMSE) and relative predicted deviation (RPD) were used to evaluate the accuracy of these models. Results showed that the PLSR model based on original spectral reflectance of the main stem had the best estimation effect in the full-wavelength model, with calibration set R2c 0.83 and RMSEc 1.63%, and validation set R2v 0.71, RMSEv 1.92%, and RPD 2.00. Among the characteristic wavelength models, PLSR model based on the first-order differential spectrum of the primary branches had the best estimation effects, with R2c 0.85 and R2v 0.87, RMSEc 1.08%, RMSEv 1.13%, and RPD 2.57. Among the estimation models constructed based on the spectra index, the RPD was less than 1.50 which prediction effect was poor. Therefore, the PLSR model based on the first derivative characteristic wavelengths might effectively estimate oleic acid content of the primary branches seeds. It also provided a sampling reference for spectral detection of oleic acid content in B. napus seeds with high oleic acid.
Brassica napus / high oleic acid / spectrum / branches / oleic acid content {{custom_keyword}} /
Table 1 Spectral index calculation formula表1 光谱指数的计算公式 |
光谱指数 Spectral index | 名称 Name | 公式 Formula |
---|---|---|
NDSI | 归一化差值光谱指数 Normalized difference spectral index | |
DSI | 差值光谱指数 Difference spectral index | |
RSI | 比值光谱指数 Ratio spectral index | |
Table 2 Oleic acid content in different parts of B. napus seeds表2 甘蓝型油菜不同部位的籽粒油酸含量 |
组别 Groups | 部位 Parts | 样本数 Number of samples | 最小值Min /% | 最大值 Max/% | 均值 Mean/% | 标准差 Standard deviation/% | 变异系数 CV/% |
---|---|---|---|---|---|---|---|
校正集 Calibration set | 主茎 Main stem | 30 | 72.99 | 87.60 | 83.76 | 3.94 | 4.70 |
一次分枝 Primary branches | 30 | 74.34 | 87.52 | 84.34 | 2.75 | 3.26 | |
二次分枝 Secondary branches | 30 | 74.96 | 87.37 | 83.48 | 2.98 | 3.57 | |
验证集 Validation set | 主茎 Main stem | 14 | 75.02 | 87.00 | 83.68 | 3.33 | 4.22 |
一次分枝 Primary branches | 14 | 76.51 | 87.40 | 84.06 | 3.06 | 3.64 | |
二次分枝 Secondary branches | 14 | 74.11 | 86.80 | 83.49 | 3.09 | 3.70 |
Fig. 1 Original and first derivative spectral reflectance curves corresponding to the maximum and minimum oleic acid content in B. napus seeds from different parts图1 甘蓝型油菜不同部位的油酸含量最大和最小值对应的原始及一阶微分光谱反射率曲线 |
Fig. 2 Correlation coefficients between original and first derivative spectral reflectance and oleic acid content in B. napus seeds from different parts图2 甘蓝型油菜不同部位籽粒原始及一阶微分光谱与油酸含量相关系数 |
Table 3 Estimation of oleic acid content in B. napus seeds based on full wavelength表3 基于全波长的甘蓝型油菜籽粒油酸含量估测 |
光谱 Spectrum | 部位 Parts | 方法 Methods | R2 C | RMSEC/% | R2 V | RMSEV /% | RPD |
---|---|---|---|---|---|---|---|
原始 Original | 主茎 Main stem | SMLR | 0.84 | 1.74 | 0.56 | 3.82 | 1.01 |
PLSR | 0.83 | 1.63 | 0.71 | 1.92 | 2.00 | ||
PCR | 0.67 | 2.28 | 0.35 | 2.87 | 1.22 | ||
一次分枝 Primary branches | SMLR | 0.65 | 1.76 | 0.53 | 2.77 | 0.99 | |
PLSR | 0.76 | 1.35 | 0.54 | 2.09 | 1.11 | ||
PCR | 0.68 | 1.56 | 0.37 | 2.44 | 1.05 | ||
二次分枝 Secondary branches | SMLR | 0.85 | 1.28 | 0.47 | 3.19 | 0.82 | |
PLSR | 0.85 | 1.15 | 0.78 | 1.45 | 1.92 | ||
PCR | 0.58 | 1.93 | 0.45 | 2.28 | 1.11 | ||
一阶 First derivative | 主茎 Main stem | SMLR | 0.88 | 1.52 | 0.77 | 2.76 | 1.27 |
PLSR | 0.93 | 1.04 | 0.56 | 2.35 | 1.59 | ||
PCR | 0.66 | 2.30 | 0.13 | 3.31 | 1.03 | ||
一次分枝 Primary branches | SMLR | 0.87 | 0.98 | 0.55 | 2.45 | 1.29 | |
PLSR | 0.95 | 0.57 | 0.37 | 2.78 | 1.02 | ||
PCR | 0.47 | 1.82 | 0.35 | 2.82 | 1.05 | ||
二次分枝 Secondary branches | SMLR | 0.9 | 1.01 | 0.77 | 2.08 | 1.51 | |
PLSR | 0.88 | 1.03 | 0.61 | 1.93 | 1.34 | ||
PCR | 0.68 | 1.68 | 0.44 | 2.31 | 1.06 |
Table 4 Characteristic wavelengths表4 特征波长 |
光谱 Spectrum | 部位 Parts | 特征波长 Characteristic wavelengths /nm |
---|---|---|
原始 Original | 主茎 Main stem | 1119、1640、1858、2019、2213 |
一次分枝 Primary branches | 1119、1640、2020、2214 | |
二次分枝 Secondary branches | 1209、1641、1725、1760、1859、2020、2216 | |
一阶 First derivative | 主茎 Main stem | 912、938、1156、1184、1225、1396、1543、1566、1688、1734、1752、1770、1894、1989、2193、2253 |
一次分枝 Primary branches | 688、911、1058、1156、1184、1225、1382、1396、1543、1688、1734、1752、1770、2071、2191、2251 | |
二次分枝 Secondary branches | 688、912、938、1156、1184、1225、1894、1988、2042、2317、2337、2354 |
Table 5 Estimation of oleic acid content in different parts of B.napus seeds based on characteristic wavelengths表5 基于特征波长的甘蓝型油菜不同部位籽粒油酸含量估测 |
光谱 Spectrum | 部位 Parts | 方法 Methods | R2 C | RMSEC/% | R2 V | RMSEV/% | RPD |
---|---|---|---|---|---|---|---|
原始 Original | 主茎 Main stem | SMLR | 0.44 | 3.11 | 0.49 | 4.11 | 0.86 |
PLSR | 0.25 | 3.40 | NA | 4.33 | 0.71 | ||
PCR | 0.24 | 3.42 | NA | 4.30 | 0.71 | ||
一次分枝 Primary branches | SMLR | 0.31 | 2.40 | 0.25 | 3.48 | 0.72 | |
PLSR | 0.20 | 2.47 | NA | 3.23 | 0.73 | ||
PCR | 0.19 | 2.47 | NA | 3.23 | 0.73 | ||
二次分枝 Secondary branches | SMLR | 0.59 | 2.00 | 0.79 | 2.00 | 1.28 | |
PLSR | 0.67 | 1.71 | 0.61 | 1.93 | 1.37 | ||
PCR | 0.67 | 1.71 | 0.61 | 1.93 | 1.36 | ||
一阶 First derivative | 主茎 Main stem | SMLR | 0.71 | 2.26 | 0.59 | 3.68 | 0.98 |
PLSR | 0.84 | 1.58 | 0.51 | 2.49 | 1.43 | ||
PCR | 0.73 | 2.06 | 0.48 | 2.56 | 1.49 | ||
一次分枝 Primary branches | SMLR | 0.64 | 1.73 | 0.57 | 2.63 | 1.01 | |
PLSR | 0.85 | 1.08 | 0.87 | 1.13 | 2.57 | ||
PCR | 0.46 | 2.02 | 0.37 | 2.43 | 1.12 | ||
二次分枝 Secondary branches | SMLR | 0.63 | 1.92 | 0.59 | 2.80 | 0.89 | |
PLSR | 0.45 | 2.20 | 0.47 | 2.25 | 1.07 | ||
PCR | 0.57 | 1.96 | 0.45 | 2.28 | 1.07 |
Table 6 Estimation of oleic acid content in different parts of B.napus based on spectral index表6 基于光谱指数的甘蓝型油菜不同部位籽粒油酸含量估测 |
部位Parts | 光谱指数 Spectral index | 估测模型 Estimation model | R2 C | RMSEC /% | R2 V | RMSEV /% | RPD |
---|---|---|---|---|---|---|---|
主茎 Main stem | DSI(1767,1766) | y=31925ⅹ+36.131 | 0.65 | 2.34 | 0.16 | 4.16 | 0.91 |
NDSI(2305,2117) | y=150.5ⅹ+20.642 | 0.67 | 2.25 | 0.27 | 3.6 | 1.06 | |
RSI(2117,2305) | y=-147.21ⅹ+144.02 | 0.67 | 2.25 | 0.28 | 3.55 | 1.06 | |
一次分枝 Primary branches | DSI(1757,1701) | y=2225.3ⅹ+46.37 | 0.69 | 1.54 | 0.57 | 2.03 | 1.35 |
NDSI(2304,2254) | y=110.65ⅹ+52.22 | 0.78 | 1.28 | 0.24 | 2.76 | 0.99 | |
RSI(2254,2304) | y=-89.977ⅹ+133.87 | 0.79 | 1.28 | 0.24 | 2.75 | 0.99 | |
二次分枝 Secondary branches | DSI(2471,1726) | y=-290.89ⅹ+105.64 | 0.62 | 1.84 | 0.49 | 2.33 | 1.08 |
NDSI(2239,2199) | y=555.44ⅹ+64.976 | 0.71 | 1.62 | 0.39 | 2.54 | 1.15 | |
RSI(2199,2239) | y=-294.64ⅹ+359.14 | 0.71 | 1.61 | 0.39 | 2.54 | 1.16 |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
吴新杰, 胡宝成, 陈凤祥, 等. 甘蓝型油菜高油酸性状研究进展[J]. 作物杂志, 2012(2): 5-9. DOI:10.16035/j.issn.1001-7283.2012.02.009 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
张振乾, 胡庆一, 官春云. 高油酸油菜研究现状、存在的问题及发展建议[J]. 作物研究, 2016, 30(4): 462-474. DOI:10.16848/j.cnki.issn.1001-5280.2016.04.27 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
卢俊玮, 田容才, 花宇辉, 等. 光谱技术在甘蓝型油菜品质检测中的研究进展[J]. 激光生物学报, 2020, 29(4): 289-294, 301. DOI:10.3969/j.issn.1007-7146.2020.04.001 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
李建国, 薛晓梦, 张照华, 等. 单粒花生主要脂肪酸含量近红外预测模型的建立及其应用[J]. 作物学报, 2019, 45(12):1891-1898.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
蒋蘋, 罗亚辉, 胡文武, 等. 基于高光谱的油茶籽内部品质检测最优预测模型研究[J]. 农机化研究, 2015, 37(7): 56-60. DOI:10.13427/j.cnki.njyi.2015.07.013 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
郝勇, 吴文辉, 商庆园, 等. 山茶油中油酸和亚油酸近红外光谱分析模型[J]. 光学学报, 2019, 39(9): 381-386. DOI:10.3788/AOS201939.0930004 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
常涛, 王悦, 程潜, 等. 高光谱反射法早期快速筛选高含油量油菜种质资源[J]. 激光生物学报, 2018, 27(6): 510-515. DOI:10.3969/j.issn.1007-7146.2018.06.004 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
李施蒙, 王耐红, 张敏, 等. 甘蓝型油菜脂肪酸组分近红外分析模型构建[J]. 广东农业科学, 2014, 41(21): 16-21. DOI:10.16768/j.issn.1004-874x.2014.21.020 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
吴建国, 石春海, 张海珍. 构建整粒油菜籽脂肪酸成分近红外反射光谱分析模型的研究[J]. 光谱学与光谱分析, 2006, 26(2): 259-262. DOI:10.3321/j.issn: 1000-0593.2006.02.017 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
高建芹, 张洁夫, 浦惠明, 等. 近红外光谱法在测定油菜籽含油量及脂肪酸组成中的应用[J]. 江苏农业学报, 2007, 23(3): 189-195. DOI:10.3969/j.issn.1000-4440.2007.03.006 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
殷紫, 常庆瑞, 刘淼, 等. 基于光谱指数的不同生育期油菜叶片SPAD估测[J]. 西北农林科技大学学报(自然科学版), 2017, 45(5): 66-72. DOI:10.13207/j.cnki.jnwafu.2017.05.010 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
由明明, 常庆瑞, 田明璐, 等. 基于随机森林回归的油菜叶片SPAD值遥感估算[J]. 干旱地区农业研究, 2019, 37(1): 74-81. DOI:10.7606/j.issn.1000-7601.2019.01.10 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
王玉娜, 李粉玲, 王伟东, 等. 基于连续投影算法和光谱变换的冬小麦生物量高光谱遥感估算[J]. 麦类作物学报, 2020, 40(11): 1389-1398. DOI:10.7606/j.issn.1009-1041.2020.11.14 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
褚小立. 化学计量学方法与分子光谱分析技术[M]. 北京: 化学工业出版社, 2011.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
于宏威, 王强, 石爱民, 等. 高光谱成像技术结合化学计量学可视化花生中蛋白质含量分布[J]. 光谱学与光谱分析, 2017, 37(3): 853. DOI:10.3964/j.issn.1000-0593(2017)03-0853-06 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
程潜, 肖钢, 张振乾, 等. 基于高光谱的冬油菜植株种子脂肪酸成分研究[J]. 作物研究, 2017, 31(3): 265-271. DOI:10.16848/j.cnki.issn.1001-5280.2017.03.11 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
尚国霞. 甘蓝型油菜高油酸性状的遗传研究及近红外检测模型的建立[D]. 重庆: 西南大学, 2010.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
智文良, 信晓阳, 崔建民, 等. 一种国产近红外仪分析油菜籽三种品质参数[J]. 中国油料作物学报, 2012, 34(3): 305-310.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
鲁蒙, 秦亚平. 利用近红外光谱分析技术检测油菜主要品质性状研究[J]. 现代商贸工业, 2010, 22(17): 387-388. DOI:10.19311/j.cnki.1672-3198.2010.17.246 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
崔虎亮, 张亚楠, 贺霞, 等. 近红外光谱技术测定油料种子脂肪酸的研究进展[J]. 中国种业, 2020(2): 13-18. DOI:10.19462/j.cnki.1671-895x.20200119.027 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
曾宇, 雷雅丽, 李京, 等. 氮、磷、钾用量与种植密度对油菜产量和品质的影响[J]. 植物营养与肥料学报, 2012, 18(1): 146-153.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
谭正林, 吴谋成, 傅廷栋. 近红外光谱技术在农产品品质检测中的应用[J]. 中国油料作物学报, 2012, 34(4): 455-460.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
高建芹, 浦惠明, 龙卫华, 等. 高油酸甘蓝型油菜油酸积累动态[J]. 中国油料作物学报, 2012, 34(4): 359-365.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
依尔夏提·阿不来提, 买买提·沙吾提, 白灯莎·买买提艾力, 等. 基于随机森林法的棉花叶片叶绿素含量估算[J]. 作物学报, 2019, 45(1): 81-90. DOI:10.3724/SP.J.1006.2019.84058 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
34 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |