CHINESE JOURNAL OF OIL CROP SCIENCES ›› 2022, Vol. 44 ›› Issue (2): 442-450.doi: 10.19802/j.issn.1007-9084.2021026
Previous Articles Next Articles
Dan JING1,2(), Xiao-feng YUE1,2,3,4(
), Yi-zhen BAI1,2,3,4, Xiao-xia DING1,2,3(
), Qi ZHANG1,2,3,4, Pei-wu LI1,2,3,4
Received:
2021-01-15
Online:
2022-04-25
Published:
2022-05-06
Contact:
Xiao-feng YUE,Xiao-xia DING
E-mail:18037891010@163.com;yuexf2017@caas.cn;dingxiaoxia@cass.cn
CLC Number:
Dan JING, Xiao-feng YUE, Yi-zhen BAI, Xiao-xia DING, Qi ZHANG, Pei-wu LI. Study on Aspergillus flavus infection in maize and peanut[J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(2): 442-450.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jouroilcrops.cn/EN/10.19802/j.issn.1007-9084.2021026
Table 1
Infection and pathogenicity-related genes of A. flavas
基因名称 Gene name | 编码蛋白 Encoding protein | 表型缺陷 Phenotypic defects | 参考文献 Reference |
---|---|---|---|
GpaB | G蛋白α亚基 G protein alpha subunit | 产孢量下降,侵染能力减弱 Production of spores was decreased and the infection ability was weakened | [ |
pbsB | 促分裂原活化蛋白 Mitogen-activating protein | 分生孢子、菌丝、菌核生长受到抑制,侵染力下降 Growth of conidia, hyphae and sclerotia was inhibited and infection ability was weakened | [ |
CDC14 | 双特异性磷酸酶 Bispecific phosphatase | 营养生长减慢,分生孢子形态异常,不能产生菌核 Vegetative growth slowed down, conidia morphology was abnormal, and produced no sclerotia | [ |
GcnE | 组蛋白乙酰转移酶 Histone acetyltransferase | 营养生长、产孢、菌核形成受到抑制 The vegetative growth, sporulation and sclerotia formation were inhibited | [ |
pks1 | 分生孢子色素蛋白 Conidia pigment protein | 营养生长、产孢、菌核形成受到抑制 The vegetative growth, sporulation and sclerotia formation were inhibited | [ |
Spds | 胞内亚精胺合酶 Intracellular spermidine synthase | 黄曲霉的生长、产孢和黄曲霉毒素产量显著下降 The growth, sporulation and aflatoxin production of A. flavus were decreased | [ |
acyA | 腺苷酸环化酶 Adenylate cyclase | 营养生长、产孢和菌核形成受到抑制,侵染能力减弱 The vegetative growth, sporulation and sclerotia formation were inhibited, and infection ability was weakened | [ |
hexA | 六角过氧化物酶体蛋白 Hexagonal peroxisomal protein | 产孢量及其产毒力显著降低 The sporulation and aflatoxin production of A. flavus were decreased | [ |
sakA | 促分裂原活化蛋白激酶 Mitogen-activated protein kinase | 产孢量及其产毒力显著降低 The sporulation and aflatoxin production of A. flavus were decreased | [ |
AflSlt2 | 促分裂原活化蛋白激酶 Mitogen-activated protein kinase | 分生孢子、菌丝、菌核生长及产毒力受到抑制,侵染能力下降 The growth of spores, hyphae and sclerotia were inhibited and infection ability was weakened | [ |
1 |
Klich M A. Aspergillus flavus: the major producer of aflatoxin[J]. Mol Plant Pathol, 2007, 8(6): 713-722. DOI:10.1111/j.1364-3703.2007.00436.x .
doi: 10.1111/j.1364-3703.2007.00436.x |
2 |
Hedayati M T, Pasqualotto A C, Warn P A, et al. Aspergillus flavus: human pathogen, allergen and mycotoxin producer[J]. Microbiology, 2007, 153(6): 1677-1692. DOI:10.1099/mic.0.2007/007641-0 .
doi: 10.1099/mic.0.2007/007641-0 |
3 |
Gong Y Y, Cardwell K, Hounsa A, et al. Dietary aflatoxin exposure and impaired growth in young children from Benin and Togo: cross sectional study[J]. BMJ, 2002, 325(7354): 20-21. DOI:10.1136/bmj.325.7354.20 .
doi: 10.1136/bmj.325.7354.20 |
4 |
Amaike S, Keller N P. Aspergillus flavus[J]. Annu Rev Phytopathol, 2011, 49(1): 107-133. DOI:10.1146/annurev-phyto-072910-095221 .
doi: 10.1146/annurev-phyto-072910-095221 |
5 | CAST. Mycotoxins: risks in plant, animal, and human systems. Ames[M]. Agricultural Science and Technology, 2003: 139. |
6 |
Mitchell N J, Bowers E, Hurburgh C, et al. Potential economic losses to the US corn industry from aflatoxin contamination[J]. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 2016, 33(3): 540-550. DOI:10.1080/19440049.2016.1138545 .
doi: 10.1080/19440049.2016.1138545 |
7 |
劳文艳, 林素珍. 黄曲霉毒素对食品的污染及危害[J]. 北京联合大学学报(自然科学版), 2011, 25(1): 64-69. DOI:10.16255/j.cnki.ldxbz.2011.01.009 .
doi: 10.16255/j.cnki.ldxbz.2011.01.009 |
8 |
Li R, Wang X, Zhou T, et al. Occurrence of four mycotoxins in cereal and oil products in Yangtze Delta region of China and their food safety risks[J]. Food Control, 2014, 35(1): 117-122. DOI:10.1016/j.foodcont.2013.06.042 .
doi: 10.1016/j.foodcont.2013.06.042 |
9 |
Ding X, Wu L, Li P, et al. Risk assessment on dietary exposure to aflatoxin B₁ in post-harvest peanuts in the Yangtze River ecological region[J]. Toxins: Basel, 2015, 7(10): 4157-4174. DOI:10.3390/toxins7104157 .
doi: 10.3390/toxins7104157 |
10 |
Ketney O. Food safety legislation regarding of aflatoxins contamination[J]. ACTA Univ Cibiniensis, 2015, 67(1): 149-154. DOI:10.1515/aucts-2015-0081 .
doi: 10.1515/aucts-2015-0081 |
11 |
Widstrom N W, Guo B Z, Wilson D M. Integration of crop management and genetics for control of preharvest aflatoxin contamination of corn[J]. J Toxicol: Toxin Rev, 2003, 22(2/3): 195-223. DOI:10.1081/TXR-120024092 .
doi: 10.1081/TXR-120024092 |
12 |
Liao B S, Zhuang W J, Tang R H, et al. Peanut aflatoxin and genomics research in China: progress and perspectives[J]. Peanut Sci, 2009, 36(1): 21-28. DOI:10.3146/at07-004.1 .
doi: 10.3146/at07-004.1 |
13 |
Ngindu A, Johnson B K, Kenya P R, et al. Outbreak of acute hepatitis caused by aflatoxin poisoning in Kenya[J]. Lancet, 1982, 1(8285): 1346-1348. DOI:10.1016/s0140-6736(82)92411-4 .
doi: 10.1016/s0140-6736(82)92411-4 |
14 |
Stenske K A, Smith J R, Newman S J, et al. Aflatoxicosis in dogs and dealing with suspected contaminated commercial foods[J]. J Am Vet Med Assoc, 2006, 228(11): 1686-1691. DOI:10.2460/javma.228.11.1686 .
doi: 10.2460/javma.228.11.1686 |
15 | Klich M A. Biogeography of Aspergillus species in soil and litter[J]. Mycologia,2002, 94, 21–27. |
16 | Payne G A.Process of contamination by aflatoxin-producing fungi and their impact on crops[A].Sinha KK, Bhatnagar D(Eds.), Mycotoxins in agriculture and food safety[M], Marcel Dekker, New York. 1998. |
17 |
Wicklow D T. Survival of Aspergillus flavus sclerotia and conidia buried in soil in Illinois or Georgia[J]. Phytopathology, 1993, 83(11): 1141. DOI:10.1094/phyto-83-1141 .
doi: 10.1094/phyto-83-1141 |
18 |
Horn B W. Biodiversity of Aspergillus section flavi in the United States: a review[J]. Food Addit Contam, 2007, 24(10): 1088-1101. DOI:10.1080/02652030701510012 .
doi: 10.1080/02652030701510012 |
19 | Cotty P J.Cottonseed losses and mycotoxins[J].Compendium of Cotton Diseases, 2001, 12(3):9-13 |
20 | Horn B W, Pitt J I.Yellow mold and aflatoxin[J].Compendium of Peanut Diseases, 1997, 30(2):44-49 |
21 | 汪世华.黄曲霉与黄曲霉毒素[M]. 北京:科学出版社,2017. 10-12. |
22 |
Torres A M, Barros G G, Palacios S A, et al. Review on pre- and post-harvest management of peanuts to minimize aflatoxin contamination[J]. Food Res Int, 2014, 62: 11-19. DOI:10.1016/j.foodres.2014.02.023 .
doi: 10.1016/j.foodres.2014.02.023 |
23 |
Zuber M S, Lillehoj E B. Status of the aflatoxin problem in corn[J]. J Environ Qual, 1979, 8(1): 1-5. DOI:10.2134/jeq1979.00472425000800010001x .
doi: 10.2134/jeq1979.00472425000800010001x |
24 |
Bean G A, Schillinger J A, Klarman W L. Occurrence of aflatoxins and aflatoxin-producing strains of Aspergillus spp. in soybeans[J]. Appl Microbiol, 1972, 24(3): 437-439. DOI:10.1128/am.24.3.437-439.1972 .
doi: 10.1128/am.24.3.437-439.1972 |
25 |
Horn B W. Relationship between soil densities of Aspergillus species and colonization of wounded peanut seeds[J]. Can J Microbiol, 2006, 52(10): 951-960. DOI:10.1139/w06-050 .
doi: 10.1139/w06-050 |
26 |
Payne G A, Brown M P. Genetics and physiology of aflatoxin biosynthesis[J]. Annu Rev Phytopathol, 1998, 36: 329-362. DOI:10.1146/annurev.phyto.36.1.329 .
doi: 10.1146/annurev.phyto.36.1.329 |
27 |
Horn B W. Ecology and population biology of aflatoxigenic fungi in soil[J]. J Toxicol: Toxin Rev, 2003, 22(2/3): 351-379. DOI:10.1081/TXR-120024098 .
doi: 10.1081/TXR-120024098 |
28 |
Nayak S N, Agarwal G, Pandey M K, et al. Aspergillus flavus infection triggered immune responses and host-pathogen cross-talks in groundnut during in-vitro seed colonization[J]. Sci Rep, 2017, 7: 9659. DOI:10.1038/s41598-017-09260-8 .
doi: 10.1038/s41598-017-09260-8 |
29 |
闫彩霞, 张浩, 李春娟, 等. 黄曲霉侵染后花生胚发育动态及抗感病相关种质群体结构[J]. 山东农业科学, 2017, 49(3): 1-9. DOI:10.14083/j.issn.1001-4942.2017.03.001 .
doi: 10.14083/j.issn.1001-4942.2017.03.001 |
30 |
Sobolev V S. Localized production of phytoalexins by peanut (Arachis hypogaea) kernels in response to invasion by Aspergillus species[J]. J Agric Food Chem, 2008, 56(6): 1949-1954. DOI:10.1021/jf703595w .
doi: 10.1021/jf703595w |
31 |
Sharma S, Choudhary B, Yadav S, et al. Metabolite profiling identified pipecolic acid as an important component of peanut seed resistance against Aspergillus flavus infection[J]. J Hazard Mater, 2021, 404: 124155. DOI:10.1016/j.jhazmat.2020.124155 .
doi: 10.1016/j.jhazmat.2020.124155 |
32 |
Pitt J I, Taniwaki M H, Cole M B. Mycotoxin production in major crops as influenced by growing, harvesting, storage and processing, with emphasis on the achievement of Food Safety Objectives[J]. Food Control, 2013, 32(1): 205-215. DOI:10.1016/j.foodcont.2012.11.023 .
doi: 10.1016/j.foodcont.2012.11.023 |
33 |
Sanders T H, Cole R J, Blankenship P D, et al. Aflatoxin contamination of peanuts from plants drought stressed in pod or root zones 1[J]. Peanut Sci, 1993, 20(1): 5-8. DOI:10.3146/i0095-3679-20-1-2 .
doi: 10.3146/i0095-3679-20-1-2 |
34 |
Craufurd P Q, Prasad P V V, Waliyar F, et al. Drought, pod yield, pre-harvest Aspergillus infection and aflatoxin contamination on peanut in Niger[J]. Field Crops Res, 2006, 98(1): 20-29. DOI:10.1016/j.fcr.2005.12.001 .
doi: 10.1016/j.fcr.2005.12.001 |
35 | Cole R J, Dorner J W, Holbrook C C. Advances in mycotoxin elimination and resistance[J].Advances in Peanut Science, 1995, 45(1):13-13 |
36 | Codex Alimentarius Commission—CAC. Code of practice for the prevention and reduction of aflatoxin contamination in peanuts[J].Codex Committee on Contaminants in Food, 2004, 55(1):146-146 |
37 |
Widstrom N W, Butron A, Guo B Z, et al. Control of preharvest aflatoxin contamination in maize by pyramiding QTL involved in resistance to ear-feeding insects and invasion by Aspergillus spp[J]. Eur J Agron, 2003, 19(4): 563-572. DOI:10.1016/S1161-0301(03)00004-2 .
doi: 10.1016/S1161-0301(03)00004-2 |
38 |
Mitchell N J, Bowers E, Hurburgh C, et al. Potential economic losses to the US corn industry from aflatoxin contamination[J]. Food Addit Contam: A, 2016, 33(3): 540-550. DOI:10.1080/19440049.2016.1138545 .
doi: 10.1080/19440049.2016.1138545 |
39 |
Umesha S, Manukumar H M G, Chandrasekhar B, et al. Aflatoxins and food pathogens: impact of biologically active aflatoxins and their control strategies[J]. J Sci Food Agric, 2017, 97(6): 1698-1707. DOI:10.1002/jsfa.8144 .
doi: 10.1002/jsfa.8144 |
40 |
Marsh S F. Preharvest infection of corn silks and kernels by Aspergillus flavus [J]. Phytopathology, 1984, 74(11): 1284. DOI:10.1094/phyto-74-1284 .
doi: 10.1094/phyto-74-1284 |
41 |
Payne G A. Effect of temperature on the preharvest infection of maize kernels by Aspergillus flavus [J]. Phytopathology, 1988, 78(10): 1376. DOI:10.1094/phyto-78-1376 .
doi: 10.1094/phyto-78-1376 |
42 |
Dolezal A L, Obrian G R, Nielsen D M, et al. Localization, morphology and transcriptional profile of Aspergillus flavus during seed colonization[J]. Mol Plant Pathol, 2013, 14(9): 898-909. DOI:10.1111/mpp.12056 .
doi: 10.1111/mpp.12056 |
43 |
Shu X, Livingston D P, Woloshuk C P, et al. Comparative histological and transcriptional analysis of maize kernels infected with Aspergillus flavus and Fusarium verticillioides [J]. Front Plant Sci, 2017, 8: 2075. DOI:10.3389/fpls.2017.02075 .
doi: 10.3389/fpls.2017.02075 |
44 |
Fountain J C, Scully B T, Ni X, et al. Environmental influences on maize-Aspergillus flavus interactions and aflatoxin production[J]. Front Microbiol, 2014, 5: 40. DOI:10.3389/fmicb.2014.00040 .
doi: 10.3389/fmicb.2014.00040 |
45 |
Smith M S, Riley T J. Direct and interactive effects of planting date, irrigation, and corn earworm (Lepidoptera: Noctuidae) damage on aflatoxin production in preharvest field corn[J]. J Econ Entomol, 1992, 85(3): 998-1006. DOI:10.1093/jee/85.3.998 .
doi: 10.1093/jee/85.3.998 |
46 |
Abbas H K, Shier W T, Cartwright R D. Effect of temperature, rainfall and planting date on aflatoxin and fumonisin contamination in commercial Bt and non-Bt corn hybrids in Arkansas[J]. Phyto, 2008, 88(2): 41-50. DOI:10.7202/018054ar .
doi: 10.7202/018054ar |
47 | Welikhe P, Essamuah-Quansah J, Boote K, et al.Impact of climate change on corn yields in Alabama[M]. Workers, 2016, 4: 1-12. |
48 |
Damianidis D, Ortiz B V, Bowen K L, et al. Minimum temperature, rainfall, and agronomic management impacts on corn grain aflatoxin contamination[J]. Agron J, 2018, 110(5): 1697-1708. DOI:10.2134/agronj2017.11.0628 .
doi: 10.2134/agronj2017.11.0628 |
49 | Cotty P J, Lee L S. Position and aflatoxin levels of toxin positive bolls on cotton plants[J].Proceedings of the Beltwide Cotton Production and Research Conference, 1990, 10(1):34-36 |
50 | Dowd P F.Involvement of arthropods in the establishment of mycotoxigenic fungi under field conditions[M]. Mycotoxins in Agriculture and Food Safety, 1998, 307-350. |
51 |
Odvody G N, Spencer N, Remmers J. A description of silk cut, a stress-related loss of kernel integrity in preharvest maize[J]. Plant Dis, 1997, 81(5): 439-444. DOI:10.1094/pdis.1997.81.5.439 .
doi: 10.1094/pdis.1997.81.5.439 |
52 |
Dowd P F. Insect management to facilitate preharvest mycotoxin management[J]. J Toxicol: Toxin Rev, 2003, 22(2/3): 327-350. DOI:10.1081/TXR-120024097 .
doi: 10.1081/TXR-120024097 |
53 |
Dowd P, Johnson E, Paul Williams W. Strategies for insect management targeted toward mycotoxin management[M]//Food Science and Technology. Boca Raton : CRC Press, 2005: 517-542. DOI:10.1201/9781420028171.ch25 .
doi: 10.1201/9781420028171.ch25 |
54 |
Guo BZ, Widstrom NW, Lee DR . et al . Prevention of preharvest aflatoxin contamination: integration of crop management and genetics in corn[M]//Aflatoxin and Food Safety. Boca Raton : CRC Press, 2005: 462-483. DOI:10.1201/9781420028171-27 .
doi: 10.1201/9781420028171-27 |
55 |
Yu J, Hennessy D A, Wu F. The impact of bt corn on aflatoxin-related insurance claims in the United States[J]. Sci Rep, 2020, 10(1): 10046. DOI:10.1038/s41598-020-66955-1 .
doi: 10.1038/s41598-020-66955-1 |
56 |
Southworth J, Randolph J C, Habeck M, et al. Consequences of future climate change and changing climate variability on maize yields in the Midwestern United States[J]. Agric Ecosyst Environ, 2000, 82(1/2/3): 139-158. DOI:10.1016/S0167-8809(00)00223-1 .
doi: 10.1016/S0167-8809(00)00223-1 |
57 |
Lenssen A W, Sainju U M, Allen B L, et al. Dryland corn production and water use affected by tillage and crop management intensity[J]. Agron J, 2018, 110(6): 2439-2446. DOI:10.2134/agronj2018.04.0267 .
doi: 10.2134/agronj2018.04.0267 |
58 |
Abbas H K, Zablotowicz R M, Weaver M A, et al. Implications of Bt traits on mycotoxin contamination in maize: Overview and recent experimental results in southern United States[J]. J Agric Food Chem, 2013, 61(48): 11759-11770. DOI:10.1021/jf400754g .
doi: 10.1021/jf400754g |
59 |
Stewart B A, Nielsen D R. Irrigation of agricultural crops[J]. Soil Sci, 1991, 152(2): 137. DOI:10.1097/00010694-199108000-00013 .
doi: 10.1097/00010694-199108000-00013 |
60 |
Thomas A E, Coker H A B, Odukoya O A, et al. Aflatoxin contamination of Arachis hypogaea (groundnuts) in Lagos area of Nigeria[J]. Bull Environ Contam Toxicol, 2003, 71(1): 42-45. DOI:10.1007/s00128-003-0128-8 .
doi: 10.1007/s00128-003-0128-8 |
61 |
Chang P K, Ehrlich K C. What does genetic diversity of Aspergillus flavus tell us about Aspergillus oryzae? [J]. Int J Food Microbiol, 2010, 138(3): 189-199. DOI:10.1016/j.ijfoodmicro.2010.01.033 .
doi: 10.1016/j.ijfoodmicro.2010.01.033 |
62 |
Payne G A, Nierman W C, Wortman J R, et al. Whole genome comparison of Aspergillus flavus and A. oryzae [J]. Med Mycol, 2006, 44(s1): 9-11. DOI:10.1080/13693780600835716 .
doi: 10.1080/13693780600835716 |
63 |
Liu Y H, Yang K L, Qin Q P, et al. G protein α subunit GpaB is required for asexual development, aflatoxin biosynthesis and pathogenicity by regulating cAMP signaling in Aspergillus flavus [J]. Toxins, 2018, 10(3): 117. DOI:10.3390/toxins10030117 .
doi: 10.3390/toxins10030117 |
64 |
Yuan J, Chen Z, Guo Z, et al. PbsB regulates morphogenesis, aflatoxin B1 biosynthesis, and pathogenicity of Aspergillus flavus [J]. Front Cell Infect Microbiol, 2018, 8: 162. DOI:10.3389/fcimb.2018.00162 .
doi: 10.3389/fcimb.2018.00162 |
65 |
Zhang F, Geng L, Deng J, et al. The MAP kinase AflSlt2 modulates aflatoxin biosynthesis and peanut infection in the fungus Aspergillus flavus [J]. Int J Food Microbiol, 2020, 322: 108576. DOI:10.1016/j.ijfoodmicro.2020.108576 .
doi: 10.1016/j.ijfoodmicro.2020.108576 |
66 |
Yang G, Hu Y, Fasoyin O E, et al. The Aspergillus flavus phosphatase CDC14 regulates development, aflatoxin biosynthesis and pathogenicity[J]. Front Cell Infect Microbiol, 2018, 8: 141. DOI:10.3389/fcimb.2018.00141 .
doi: 10.3389/fcimb.2018.00141 |
67 |
Lan H, Sun R, Fan K, et al. The Aspergillus flavus histone acetyltransferase AflGcnE regulates morphogenesis, aflatoxin biosynthesis, and pathogenicity[J]. Front Microbiol, 2016, 7: 1324. DOI:10.3389/fmicb.2016.01324 .
doi: 10.3389/fmicb.2016.01324 |
68 |
魏鹏霖, 张鹏, 李伟, 等. 黄曲霉分生孢子色素合成基因pks1的鉴定及其对生长发育和侵染性的影响[J]. 微生物学报, 2019, 59(5): 965-977. DOI:10.13343/j.cnki.wsxb.20180517 .
doi: 10.13343/j.cnki.wsxb.20180517 |
69 |
Asis R, Muller V, Barrionuevo D L, et al. Analysis of protease activity in Aspergillus flavus and A. parasiticus on peanut seed infection and aflatoxin contamination[J]. Eur J Plant Pathol, 2009, 124(3): 391-403. DOI:10.1007/s10658-008-9426-7 .
doi: 10.1007/s10658-008-9426-7 |
70 |
Majumdar R, Lebar M, Mack B, et al. The Aspergillus flavus spermidine synthase (spds) gene, is required for normal development, aflatoxin production, and pathogenesis during infection of maize kernels[J]. Front Plant Sci, 2018, 9: 317. DOI:10.3389/fpls.2018.00317 .
doi: 10.3389/fpls.2018.00317 |
71 |
Yang K, Qin Q, Liu Y, et al. Adenylate cyclase AcyA regulates development, aflatoxin biosynthesis and fungal virulence in Aspergillus flavus [J]. Front Cell Infect Microbiol, 2016, 6: 190. DOI:10.3389/fcimb.2016.00190 .
doi: 10.3389/fcimb.2016.00190 |
72 |
Yuan J, Li D, Qin L, et al. HexA is required for growth, aflatoxin biosynthesis and virulence in Aspergillus flavus [J]. BMC Mol Biol, 2019, 20(1): 4. DOI:10.1186/s12867-019-0121-3 .
doi: 10.1186/s12867-019-0121-3 |
73 |
Tumukunde E, Li D, Qin L, et al. Osmotic-adaptation response of sakA/hogA gene to aflatoxin biosynthesis, morphology development and pathogenicity in Aspergillus flavus [J]. Toxins, 2019, 11(1): 41. DOI:10.3390/toxins11010041 .
doi: 10.3390/toxins11010041 |
74 | 邱西克, 康彦平, 郭建斌, 等. 花生荚壳抗黄曲霉菌侵染的鉴定方法研究及抗性种质发掘[J]. 中国油料作物学报, 2019, 41(1): 109-114. |
75 |
唐兆秀, 纪荣昌, 李光星, 等. 花生A. flavus菌株产毒性与致病性研究[J]. 福建农业学报, 2000, 15(2): 19-22. DOI:10.19303/j.issn.1008-0384.2000.02.004 .
doi: 10.19303/j.issn.1008-0384.2000.02.004 |
76 |
张杏, 岳晓凤, 丁小霞, 等. 中国西南花生产区黄曲霉菌分布、产毒力及花生黄曲霉毒素污染[J]. 中国油料作物学报, 2019, 41(5): 773-780. DOI:10.19802/j.issn.1007-9084.2018242 .
doi: 10.19802/j.issn.1007-9084.2018242 |
[1] | Juan WANG, Da-chuan SHI, Hao-ning CHEN, Li-qing WU, Cai-xia YAN, Jing CHEN, Xiao-bo ZHAO, Quan-xi SUN, Cui-ling YUAN, Yi-fei MOU, Shi-hua SHAN, Chun-juan LI. Identification and expression pattern analysis of peanut candidate genes of high-affinity nitrate transporters [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(2): 316-323. |
[2] | Shu-liang ZHU, Kun-kun ZHAO, Gu-qiang GAO, Cheng-xin QU, Ying-ying MA, Rui REN, Fang-ping GONG, Zhong-feng LI, Xing-li MA, Xing-guo ZHANG, Dong-mei YIN. Establishment and application of peanut seed coat color intelligent recognition system [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(2): 324-330. |
[3] | Deng-yu LYU, Xi HAO, Li-juan MIAO, Hai-qiu YU, Yu-long WANG, Jun ZHANG, Wen-zhao DONG, Bin-yan HUANG, Xin-you ZHANG. Physiological and biochemical response mechanism of peanut germination to low temperature stress [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(2): 385-391. |
[4] | Mei-qing WU, Ning-bo ZENG, Jing WANG, Kang TANG, Deng-wang LIU, Lin LI. Effects of calcium fertilizer application on acidity and content of toxic metal elements in upland red soil planted with peanut [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(2): 392-398. |
[5] | Jing-yao REN, Jing WANG, Xin AI, Shu-li ZHAO, Reng-yuan LI, Chun-ji JIANG, Xin-hua ZHAO, Dong-mei YIN, Hai-qiu YU. Physiological response of peanut at seedling stage under drought stress [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(1): 138-146. |
[6] | Shu-bo WAN, Xin-guo LI. Theory and technology of peanut whole-period controllable fertilizaion [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(1): 211-214. |
[7] | Yi-fei JIANG, Bo-lun YU, Ying-bin DING, Wei-gang CHEN, Jian-bin GUO, Hai-wen CHEN, Huai-yong LUO, Nian LIU, Li HUANG, Xiao-jing ZHOU, Hui-fang JIANG, Yong LEI, Li-ying YAN, Yan-ping KANG, Cheng-hong JIANG, Bo-shou LIAO. Development and characterization of novel large-podded peanut genotypes with resistance to aflatoxin contamination [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(1): 72-77. |
[8] | Yang ZHOU, Xiao-feng YUE, Xiao-qian TANG, Hong-lin YAN, Qi ZHANG, Pei-wu LI. A preliminary study on the coupling effect of aflatoxin green control and super-nodulation [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(6): 947-960. |
[9] | Feng-gao CUI, Xiao-hui HU, Hua-rong MIAO, Sheng-zhong ZHANG, Juan WANG, Song WANG, Gang HOU, Jie SUI, Jian-cheng ZHANG, Jing CHEN. QTL mapping for 100-pod and 100-seed weights in cultivated peanut [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(6): 1025-1030. |
[10] | Jian-wei LYU, Min JIANG, Yong-guo TIAN, Ting-hui HU, Liang-qiang CHENG, Qing-lin RAO, Jin-hua WANG, Jun WANG. Analysis on nutrients and comprehensive feeding evaluation of peanut plant [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(6): 1031-1041. |
[11] | Kang CHEN. Effect of density and nitrogen fertilizer on SPAD, plant and pod yield characteristics under single seed planting in peanut [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(6): 1070-1076. |
[12] | Ju-xiang WU, Man-lin XU, Xia ZHANG, Jing YU, Zhi-qing GUO, Ying LI, Xin-ying SONG, Kang HE, Xin-guo LI, Ru-jun ZHOU, Yu-cheng CHI, Shu-bo WAN. Evaluation of resistance of Shandong peanut varieties to Sphaceloma arachidis [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(6): 1126-1131. |
[13] | Dong-xin HUAI, Jie WU, Xiao-meng XUE, Fang LIU, Mei-ling HU, Li-ying YAN, Yu-ning CHEN, Xin WANG, Yan-ping KANG, Zhi-hui WANG, Nian LIU, Hui-fang JIANG, Yong LEI, Bo-shou LIAO. Development of a portable instrument for identifying high oleate peanut [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(6): 1150-1158. |
[14] | XIE Chang, DANG Xian-shi, LIU Na, YAO Rui, YU Hai-qiu, WANG Jing, JIANG Chun-ji, ZHAO Xin-hua, WANG Xiao-guang. Quality formation characteristic of peanut varieties with different grain types [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(5): 795-. |
[15] | XU Jing, PAN Li-juan, CHEN Na, WANG Tong, CHEN Ming-na, WANG Mian, YU Shan-lin, DING Hong, SUN Wei, ZHAO Xiao-dong, CHI Xiao-yuan. Pods mechanical property of different peanuts and identification of elite varieties(lines) [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(5): 803-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||