CHINESE JOURNAL OF OIL CROP SCIENCES ›› 2022, Vol. 44 ›› Issue (3): 621-631.doi: 10.19802/j.issn.1007-9084.2021069
Previous Articles Next Articles
Mei-ling LIU1,2(), Nai-jie FENG1,3,2(
), Dian-feng ZHENG1,3,2(
), Sheng-jie FENG2, Shi-ya WANG2, Hong-tao XIANG4
Received:
2021-02-26
Online:
2022-06-25
Published:
2022-07-04
Contact:
Nai-jie FENG,Dian-feng ZHENG
E-mail:lml19960416@126.com;byndfnj@126.com;zdffnj@163.com;byndfnj@126.com
CLC Number:
Mei-ling LIU, Nai-jie FENG, Dian-feng ZHENG, Sheng-jie FENG, Shi-ya WANG, Hong-tao XIANG. Effects of potassium indole butyrate on root morphogenesis and physiological metabolism of soybean under different soil water conditions[J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 621-631.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jouroilcrops.cn/EN/10.19802/j.issn.1007-9084.2021069
Table 1
Effects of potassium indole butyrate on dry weight and morphogenesis of soybean roots under different soil water conditions
品种 Variety | 处理 Treatment | 干重 Dry weight/g | 总根长 Total rootlength/cm | 根表面积 Root surface area/cm2 | 根平均直径 Root average diameter/mm | 根体积 Root volume/cm3 |
---|---|---|---|---|---|---|
垦丰16 Kenfeng 16 | CK | 0.11±0.00d | 647.41±24.48c | 75.24±3.24c | 0.35±0.02a | 0.89±0.05d |
I | 0.12±0.00d | 770.37±35.86c | 92.69±4.32b | 0.37±0.00a | 0.97±0.02cd | |
DCK | 0.26±0.01c | 1163.30±37.02ab | 125.32±9.10a | 0.43±0.08a | 1.11±0.05bc | |
DI | 0.27±0.00c | 1194.50±21.81ab | 130.99±2.53a | 0.45±0.09a | 1.15±0.04bc | |
RDCK | 0.32±0.01b | 1115.61±123.10b | 132.78±6.65a | 0.47±0.07a | 1.27±0.10ab | |
RDI | 0.33±0.00a | 1389.01±115.86a | 140.04±2.26a | 0.54±0.10a | 1.39±0.09a | |
合丰50 Hefeng 50 | CK | 0.13±0.01c | 869.79±85.03d | 79.53±1.83c | 0.38±0.02c | 0.98±0.02d |
I | 0.13±0.00c | 928.63±17.95cd | 100.33±7.18c | 0.41±0.03bc | 1.16±0.01cd | |
DCK | 0.29±0.02b | 1148.65±47.95bc | 127.77±8.80b | 0.48±0.08abc | 1.18±0.05bcd | |
DI | 0.31±0.02ab | 1232.84±52.64ab | 133.55±3.02ab | 0.53±0.07abc | 1.21±0.03bc | |
RDCK | 0.33±0.01ab | 1325.63±152.45ab | 138.92±12.12ab | 0.58±0.08ab | 1.38±0.12ab | |
RDI | 0.35±0.03a | 1456.31±56.60a | 152.56±3.31a | 0.66±0.02a | 1.47±0.07a |
Table 2
Effects of soil water treatment and IBA-K treatment on root dry weight and morphological indexes of different soybean varieties
品种 Variety | 处理 Treatment | 根干重 Root dry weight | 总根长 Total root length | 根表面积 Root surface area | 根平均直径 Root average diameter | 根体积 Root volume |
---|---|---|---|---|---|---|
垦丰16 Kenfeng 16 | 不同土壤水分处理Different soil water treatment(A) | 757.13** | 32.29** | 56.88** | 2.21 | 19.48** |
IBA-K处理Treatment(B) | 4.96* | 5.66* | 5.50* | 0.42 | 2.60 | |
A×B | 0.69 | 1.39 | 0.73 | 0.05 | 0.17 | |
合丰50 Hefeng 50 | 不同土壤水分处理Different soil water treatment(A) | 90.40** | 18.80** | 33.42** | 7.00** | 15.69** |
IBA-K处理Treatment(B) | 0.78 | 1.92 | 5.40* | 1.28 | 3.52 | |
A×B | 0.18 | 0.10 | 0.57 | 0.06 | 0.62 |
Table 3
Effects of different soil water treatments and IBA-K treatments on root physiological indexes of different soybean varieties
品种 Variety | 处理 Treatment | MDA含量 MDA content | 相对电导率 Relative conductivity | 可溶性糖含量 Soluble sugar content | 脯氨酸含量 Proline content | |
---|---|---|---|---|---|---|
垦丰16 Kenfeng 16 | 不同土壤水分处理Different soil water treatment(A) | 761.46** | 144.92** | 1844.69** | 158.90** | |
IBA-K处理Treatment(B) | 19.36** | 12.89** | 45.06** | 87.36** | ||
A×B | 4.18* | 0.55 | 27.93** | 13.74** | ||
合丰50 Hefeng 50 | 不同土壤水分处理Different soil water treatment(A) | 572.35** | 422.28** | 1534.65** | 309.79** | |
IBA-K处理Treatment(B) | 29.13** | 60.03** | 105.63** | 146.77** | ||
A×B | 1.02 | 2.73 | 33.81** | 37.52** | ||
品种 Variety | 处理 Treatment | SOD活性 SOD activity | POD活性 POD activity | CAT活性 CAT activity | ||
垦丰16 Kenfeng 16 | 不同土壤水分处理Different soil water treatment(A) | 126.43** | 253.95** | 0.66 | ||
IBA-K处理Treatment(B) | 5.04* | 7.36* | 2.49 | |||
A×B | 3.15 | 1.38 | 0.05 | |||
合丰50 Hefeng 50 | 不同土壤水分处理Different soil water treatment(A) | 76.64** | 152.93** | 0.81 | ||
IBA-K处理Treatment(B) | 68.36** | 26.58** | 2.74 | |||
A×B | 1.37 | 4.97* | 0.04 |
1 |
Wang W, Wang C, Pan D, et al. Effects of drought stress on photosynthesis and chlorophyll fluorescence images of soybean (Glycine max) seedlings[J]. Int J Agric Biol Eng, 2018, 11(2):196-201. DOI:10.25165/j.ijabe.20181102.3390 .
doi: 10.25165/j.ijabe.20181102.3390 |
2 |
Yang X J, Liu Y, Bai W, et al. Spatiotemporal assessment of drought related to soybean production and sensitivity analysis in Northeast China[J]. J Appl Meteorol Climatol, 2017, 56(4): 937-952. DOI:10.1175/JAMC-D-16-0195.1 .
doi: 10.1175/JAMC-D-16-0195.1 |
3 |
Yu X Y, He X Y, Zheng H F, et al. Spatial and temporal analysis of drought risk during the crop-growing season over northeast China[J]. Nat Hazards, 2014, 71(1): 275-289. DOI:10.1007/s11069-013-0909-2 .
doi: 10.1007/s11069-013-0909-2 |
4 |
Thao N P, Tran L S P. Potentials toward genetic engineering of drought-tolerant soybean[J]. Crit Rev Biotechnol, 2012, 32(4): 349-362. DOI:10.3109/07388551.2011.643463 .
doi: 10.3109/07388551.2011.643463 |
5 |
Liang H, Yu Y, Yang H, et al. Inheritance and QTL mapping of related root traits in soybean at the seedling stage[J]. Theor Appl Genet, 2014, 127(10): 2127-2137. DOI:10.1007/s00122-014-2366-z .
doi: 10.1007/s00122-014-2366-z |
6 |
阚宝忠. 浅议大豆苗期田间管理[J]. 农业与技术, 2019, 39(21): 123-124. DOI: 10. 19754 /j. nyyjs. 20191115053 .
doi: 10. 19754 /j. nyyjs. 20191115053 |
7 |
Luo L J. Breeding for water-saving and drought-resistance rice (WDR) in China[J]. J Exp Bot, 2010, 61(13): 3509-3517. DOI:10.1093/jxb/erq185 .
doi: 10.1093/jxb/erq185 |
8 |
Manavalan L P, Guttikonda S K, Tran L S, et al. Physiological and molecular approaches to improve drought resistance in soybean[J]. Plant Cell Physiol, 2009, 50(7): 1260-1276. DOI:10.1093/pcp/pcp082 .
doi: 10.1093/pcp/pcp082 |
9 |
Song L, Prince S, Valliyodan B, et al. Genome-wide transcriptome analysis of soybean primary root under varying water-deficit conditions[J]. BMC Genomics, 2016, 17: 57. DOI:10.1186/s12864-016-2378-y .
doi: 10.1186/s12864-016-2378-y |
10 |
Bellaloui N. Soybean seed phenol, lignin, and isoflavones and sugars composition altered by foliar boron application in soybean under water stress[J]. Food Nutr Sci, 2012, 3(4):579-590. DOI:10.4236/fns.2012.34080 .
doi: 10.4236/fns.2012.34080 |
11 |
李琬. 干旱对大豆根系生育的影响及灌溉缓解效应研究进展[J]. 草业学报, 2019, 28(4): 192-202. DOI:10.11686/cyxb2018222 .
doi: 10.11686/cyxb2018222 |
12 |
Le D T, Nishiyama R, Watanabe Y, et al. Differential gene expression in soybean leaf tissues at late developmental stages under drought stress revealed by genome-wide transcriptome analysis[J]. PLoS One, 2012, 7(11): e49522. DOI:10.1371/journal.pone.0049522 .
doi: 10.1371/journal.pone.0049522 |
13 |
Abogadallah G M. Antioxidative defense under salt stress[J]. Plant Signal Behav, 2010, 5(4): 369-374. DOI:10.4161/psb.5.4.10873 .
doi: 10.4161/psb.5.4.10873 |
14 |
Abogadallah G M. Insights into the significance of antioxidative defense under salt stress[J]. Plant Signal Behav, 2010, 5(4): 369-374. DOI:10.4161/psb.5.4.10873 .
doi: 10.4161/psb.5.4.10873 |
15 |
Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiol Biochem, 2010, 48(12): 909-930. DOI:10.1016/j.plaphy.2010.08.016 .
doi: 10.1016/j.plaphy.2010.08.016 |
16 |
Zhang M C, Zhai Z X, Tian X L, et al. Brassinolide alleviated the adverse effect of water deficits on photosynthesis and the antioxidant of soybean (Glycine max L.)[J]. Plant Growth Regul, 2008, 56(3): 257-264. DOI:10.1007/s10725-008-9305-4 .
doi: 10.1007/s10725-008-9305-4 |
17 |
刘春娟, 宋双伟, 冯乃杰, 等. 干旱胁迫及复水条件下烯效唑对大豆幼苗形态和生理特性的影响[J]. 干旱地区农业研究, 2016, 34(6): 222-227,256. DOI:10.7606/j.issn.1000-7601.2016.06.34 .
doi: 10.7606/j.issn.1000-7601.2016.06.34 |
18 |
刘风刚, 巨鹏飞, 王福政, 等. 三唑酮对大豆花期干旱胁迫下根系AsA-GSH循环的影响[J]. 大豆科学, 2019, 38(05): 740-746. DOI: 10.11861 /j.issn.1000-9841.2019.05.0740 .
doi: 10.11861 /j.issn.1000-9841.2019.05.0740 |
19 |
齐德强, 冯乃杰, 郑殿峰, 等. 不同壮秧剂对水稻幼苗生长及生理特性的影响[J]. 核农学报, 2019, 033(008): 1611-1621. DOI: 10.11869 /j.issn.100-8551.2019.08.1611 .
doi: 10.11869 /j.issn.100-8551.2019.08.1611 |
20 |
Knight P R, Coker C H, Anderson J M, et al. Mist Interval and K-IBA concentration influence rooting of orange and Mountain Azalea[J]. Native Plants J, 2005, 6(2):111-117. DOI: 10.2979/NPJ.2005.6.2.111 .
doi: 10.2979/NPJ.2005.6.2.111 |
21 |
Griffin J J, Lasseigne F T. Effects of K-IBA on the Rooting of stem cuttings of 15 taxa of snowbells (Styrax spp.)[J]. J Environ Hortic, 2005, 23(4): 171-174. DOI:10.24266/0738-2898-23.4.171 .
doi: 10.24266/0738-2898-23.4.171 |
22 |
王红, 宋涛, 刘辉, 等. 不同浓度生根剂对玉米根系生长的影响[J]. 黑龙江农业科学, 2016(2): 57-60. DOI:10.11942/j.issn1002-2767.2016.02.0057 .
doi: 10.11942/j.issn1002-2767.2016.02.0057 |
23 |
王利彬, 刘丽君, 裴宇峰, 等. 大豆种质资源芽期抗旱性鉴定[J]. 东北农业大学学报, 2012, 43(1): 36-43. DOI:10.19720/j.cnki.issn.1005-9369.2012.01.007 .
doi: 10.19720/j.cnki.issn.1005-9369.2012.01.007 |
24 |
Ohashi Y, Nakayama N, Saneoka H, et al. Effects of drought stress on photosynthetic gas exchange, chlorophyll fluorescence and stem diameter of soybean plants[J]. Biol Plant, 2006, 50(1):138-141. DOI: 10.1007/s10535-005-0089-3 .
doi: 10.1007/s10535-005-0089-3 |
25 |
Dong S, Jiang Y, Dong Y, et al. A study on soybean responses to drought stress and rehydration[J]. Saudi Journal of Biological Sciences, 2019, 26(8): 2006-2017. DOI: 10.1016/j.sjbs.2019.08.005 .
doi: 10.1016/j.sjbs.2019.08.005 |
26 | 李合生. 植物生理生化实验原理和技术[M]. 高等教育出版社, 2000. |
27 |
Jumrani K, Bhatia V S. Interactive effect of temperature and water stress on physiological and biochemical processes in soybean[J]. Physiol Mol Biol Plants, 2019, 25(3): 667-681. DOI: 10.1007/s12298-019-00657-5 .
doi: 10.1007/s12298-019-00657-5 |
28 |
Kim H J, Cho H S, Pak J H, et al. Confirmation of drought tolerance of ectopically expressed AtABF3 gene in soybean[J]. Mol cells, 2018, 41(5): 413. DOI: 10.14348/molcells.2018.2254 .
doi: 10.14348/molcells.2018.2254 |
29 | He J, Du Y L, Wang T, et al. Conserved water use improves the yield performance of soybean (Glycine max (L.) Merr.) under drought[J]. Agric Water Manag, 2017, 179: 236-245. DOI.org/10.1016/j.agwat.2016.07.008. |
30 |
Smith D M, Inman-Bamber N G, Thorburn P J. Growth and function of the sugarcane root system[J]. Field Crops Res, 2005, 92(2-3):169-183. DOI:10.1016/j.fcr.2005.01.017 .
doi: 10.1016/j.fcr.2005.01.017 |
31 |
Zhang M, He S, Zhan Y, et al. Exogenous melatonin reduces the inhibitory effect of osmotic stress on photosynthesis in soybean[J]. PLoS One, 2019, 14(12): e0226542. DOI:10.1371/journal.pone.0226542 .
doi: 10.1371/journal.pone.0226542 |
32 |
Roldán A, Díaz-Vivancos P, Hernández J A, et al. Superoxide dismutase and total peroxidase activities in relation to drought recovery performance of mycorrhizal shrub seedlings grown in an amended semiarid soil[J]. J Plant Physiol, 2008, 165(7): 715-722. DOI:10.1016/j.jplph.2007.02.007 .
doi: 10.1016/j.jplph.2007.02.007 |
33 |
Freitas P A F, Miranda R, Marques E C, et al. Salt tolerance induced by exogenous proline in maize is related to low oxidative damage and favorable ionic homeostasis[J]. J Plant Growth Regul, 2018, 37(3): 911-924. DOI:10.1007/s00344-018-9787-x .
doi: 10.1007/s00344-018-9787-x |
34 |
Golldack D, Li C, Mohan H, et al. Tolerance to drought and salt stress in plants: Unraveling the signaling networks[J]. Front Plant Sci, 2014, 5: 151. DOI:10.3389/fpls.2014.00151 .
doi: 10.3389/fpls.2014.00151 |
35 |
Zhang M, Duan L, Tian X, et al. Uniconazole-induced tolerance of soybean to water deficit stress in relation to changes in photosynthesis, hormones and antioxidant system[J]. J Plant Physiol, 2007, 164(6):709-717. DOI: 10.1016/j.jplph.2006.04.008 .
doi: 10.1016/j.jplph.2006.04.008 |
36 | Nohong B, Nompo S. Effect of water stress on growth, yield, proline and soluble sugars contents of Signal grass and Napier grass species[J]. American-Eurasian J Sustain Agr, 2015: 14-22. ISSN: 1995-0748, EISSN: 1998-1074. |
37 |
Szabados L, Savouré A. Proline: a multifunctional amino acid[J]. Trends Plant Sci, 2010, 15(2): 89-97. DOI:10.1016/j.tplants.2009.11.009 .
doi: 10.1016/j.tplants.2009.11.009 |
38 |
Kheirizadeh Arough Y, Seyed Sharifi R, Sedghi M, et al. Effect of zinc and bio fertilizers on antioxidant enzymes activity, chlorophyll content, soluble sugars and proline in Triticale under salinity condition[J]. Not Bot Horti Agrobo, 2016, 44(1): 116-124. DOI:10.15835/nbha44110224 .
doi: 10.15835/nbha44110224 |
39 |
Krasensky J, Jonak C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks[J]. J Exp Bot, 2012, 63(4): 1593-1608. DOI:10.1093/jxb/err460 .
doi: 10.1093/jxb/err460 |
40 |
Nguyen T T Q, Pham H B V, Le T V, et al. Evaluation of proline, soluble sugar and ABA content in soybean Glycine max (L.) under drought stress memory[J]. AIMS Bioeng, 2020, 7(3): 114-123. DOI:10.3934/bioeng.2020011 .
doi: 10.3934/bioeng.2020011 |
41 |
Mattioli R, Costantino P, Trovato M. Proline accumulation in plants: not only stress[J]. Plant signal behav, 2009, 4(11): 1016-1018. DOI: 10.4161/psb.4.11.9797 .
doi: 10.4161/psb.4.11.9797 |
[1] | Jing-hui WANG, Yang LIU, Qi-you ZHENG, Xiao-tang CHENG, Chao-hui WANG. Identification of soybean producing area in North China based on multi-element and fatty acid fingerprint characteristics [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 532-538. |
[2] | Yue-li YUAN, Yuan-yuan YI, Yong ZHAN, Li-miao CHEN, Song-li YUAN, Yi HUANG, Zhi-yuan XIAO, Chan-juan ZHANG, Xin-an ZHOU. Distinguishing and evaluating high nitrogen-use-efficient soybean germplasm at seedling stage [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 539-547. |
[3] | Wei LIU, Yu-bin WANG, Wei LI, Li-feng ZHANG, Cai-jie WANG, Ran XU, Hai-ying DAI, Yan-wei ZHANG. QTL mapping and candidate genes identification for flowering time of soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 548-554. |
[4] | Jian-qiu LIANG, Xiao-bo YU, Jian-gang AN, Zhao-qiong ZENG, Hai-ying WU, Ming-rong ZHANG. Maturity group classification of soybean varieties (lines) in the national trials [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 555-561. |
[5] | Yu-jia TAO, Lei LI, Zong-liang REN, Cheng LU, Qing-tao GONG, Xing-hua XING, Hai-dong JIANG. Regulation of signaling of H2O2 homeostasis under mild drought on drought resistance of soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 602-609. |
[6] | Qing-nan HAO, Fang YANG, Ai-ai WANG, Ze-fu LONG, Zhong-lu YANG, Hai-feng CHEN, Zhi-hui SHAN, Jun-bo DENG, Xin-an ZHOU. Effects of nitrogen fertilizer and sodium nitratol on photosynthetic characteristics and yield quality in southern soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 610-620. |
[7] | Kai LU, Jun-shan QI, Kai QI, Li-guo MA, Yue-li ZHANG, Bo ZHANG, Guo-ping MA, Chang-song LI. Pathogen identification of Pythium root rot disease on soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 652-658. |
[8] | Lu-lu LIU, Jian-fei LI, Yue SHU, xiao-yang CHEN, Gui-xiang TANG. Current situation of soybean production and consumption in China and strategies to improve self-sufficiency rate [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(2): 242-248. |
[9] | Lu HAN, Ke-xin QU, Yong-fu FU, Qing-shan CHEN, Xiao-xia WU, Xiao-mei ZHANG. A study on the function of GmWUS2 gene regulating the number of soybean nodules [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(2): 289-297. |
[10] | Hong-chang JIA, De-zhi HAN, Hong-rui YAN, Lei ZHANG, Ji-li LIANG, Xiao-fei YAN, Hai-fang ZHU, Wen-cheng LU. Comparative study on identification methods of soybean maturity group [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(2): 307-315. |
[11] | Le GAO, Zhi-qiang LI, Kai LI, Hai-jian ZHI. Advances in transgenic resistance to soybean mosaic virus disease [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(2): 434-441. |
[12] | Ying-lu HU, Xin-yue TIAN, Lei CHEN, Ning DING, Xiao-feng LI, Yu GAO, Shu-sen SHI. Analysis of fertility and population trend of experimental population of Riptortus pedestris fed on soybean pods [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(2): 460-466. |
[13] | Yue LI, Hai-yan LI, Yuan-yuan ZHOU, Jing-sheng CHEN, Ji-dong YU. Effect of ethanol extract of industrial hemp stalks on physiological and biochemical metabolism of soybean cyst nematode [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(1): 177-182. |
[14] | Jia-lin LIU, Hui-min XIE, Zheng ZHANG, Bo-yun YANG, Huo-lin LUO, Gui-ru GONG, Dong-jin XIONG. Population structure and genetic analysis within soybean cultivars of Huang-Huai-Hai and Southern region of China based on SSR markers related to QTL [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(1): 63-71. |
[15] | Yang ZHOU, Xiao-feng YUE, Xiao-qian TANG, Hong-lin YAN, Qi ZHANG, Pei-wu LI. A preliminary study on the coupling effect of aflatoxin green control and super-nodulation [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(6): 947-960. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||