[1] Huang Y, Chen
Q, Deng M, et al. Heavy metal pollution and health risk assessment of
agricultural soils in a typical peri-urban area in southeast China[J]. Environ
Manage, 2018, 207: 159-168. DOI: 10.1016/j.jenvman.2017.10.072
[2] Ikenaka Y,
Nakayama S M. M., Muzandu K, et al. Heavy metal contamination of soil and sediment in
Zambia[J]. African
Journal of Environmental Science and Technology, 2010, 4(11):729-739. DOI: 10.5897/AJEST10.179
[3] Li F T, Qi J
M, Zhang G Y, et al. Effect of Cadmium Stress on the Growth, Antioxidative
Enzymes and Lipid Peroxidation in Two Kenaf (Hibiscus cannabinus L.) Plant
Seedlings[J]. Journal of Integrative Agriculture, 2013, 12(4):610-620. DOI:
10.1016/s2095-3119(13)60279-8
[4] Vestena S,
Cambraia J, Ribeiro C, et al. Cadmium-induced Oxidative Stress and
Antioxidative Enzyme Response in Water Hyacinth and Salvinia[J]. Brazilian Society of Plant Physiology, 2011, 23(2):131-139.
DOI: 10.1590/S1677-04202011000200005
[5] Hasan S.A,
Fariduddin Q, Ali B, S, et al. Cadmium: Toxicity and tolerance in plants[J].
Journal of Environmental Biology, 2009, 30(2):165-174.
[6] Clemens S,
Aarts M G, Thomine S, et al. Plant science: the key to preventing slow cadmium
poisoning[J]. Trends Plant Sci, 2013, 18(2):92-99. DOI:
10.1016/j.tplants.2012.08.003
[7] Waalkes M P. Cadmium carcinogenesis in review[J]. Journal of
Inorganic Biochemistry, 2000, 79: 241-244. DOI: 10.1016/S0162-0134(00)00009-X
[8] Chen H, Teng
Y, Lu S, et al. Contamination features and health risk of soil heavy metals in
China[J]. Sci Total Environ, 2015, 512-513, 143-153. DOI:
10.1016/j.scitotenv.2015.01.025
[9] Järup L. Hazards of heavy metal contamination[J]. British
Medical Bulletin, 2003, 68: 167–182. DOI: 10.1093/bmb/ldg032
[10] Kushwahaa A, Rania R, Kumar S, et al. Heavy metal
detoxification and tolerance mechanisms in plants: Implications for
phytoremediation[J]. Environmental Reviews, 2016, 24(1): 39–51.
DOI:10.1139/er-2015-0010
[11] Memon A R, Schroder P. Implications of metal
accumulation mechanisms to phytoremediation[J]. Environ Sci Pollut Res Int,
2009, 16(2): 162-175. DOI:10.1007/s11356-008-0079-z
[12] Hall J L, Williams L E. Transition metal
transporters in plants[J]. J Exp Bot, 2003, 54(393): 2601-2613.
DOI:10.1093/jxb/erg303
[13] Milner M J, Seamon J, Craft E, et al. Transport
properties of members of the ZIP family in plants and their role in Zn and Mn
homeostasis[J]. Journal of Experimental Botany, 2013, 64(1):369-381. DOI:
10.1093/jxb/ers315
[14] Fan W, Liu C, Cao B, et al. A meta-analysis of
transcriptomic profiles reveals molecular pathways response to cadmium stress
of Gramineae[J]. Ecotoxicol Environ Saf, 2021, 209: 111816. DOI:
10.1016/j.ecoenv.2020.111816
[15] Zheng X, Chen L, Li X. Arabidopsis and rice showed
a distinct pattern in ZIPs genes expression profile in response to Cd
stress[J]. Bot Stud, 2018, 59(1): 22. DOI: 10.1186/s40529-018-0238-6
[16] Weber M, Harada E, Vess C, et al. Comparative
microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots
identifies nicotianamine synthase, a ZIP transporter and other genes as
potential metal hyperaccumulation factors[J]. Plant J, 2004, 37(2): 269-281.
DOI: 10.1046/j.1365-313x.2003.01960.x
[17] Chen W R, Feng Y, Chao Y E, et al. Genomic analysis
and expression pattern of OsZIP1, OsZIP3, and OsZIP4 in two rice (Oryza sativa
L.) genotypes with different zinc efficiency[J]. Russian Journal of Plant
Physiology, 2008, 55(3): 400-409. DOI: 10.1134/s1021443708030175
[18] Tiong J, McDonald G K, Genc Y, et al. HvZIP7
mediates zinc accumulation in barley (Hordeum vulgare) at moderately high zinc
supply[J]. New Phytol, 2014, 201(1): 131-143. DOI:10.1111/nph.12468
[19] Pedas P, Husted S. Zinc transport mediated by barley ZIP proteins are
induced by low pH[J]. Plant Signaling & Behavior, 2009, 4:9: 842-845. DOI:
10.4161/ psb.4.9.9375
[20] Evens N P, Buchner P, Williams L E, et al. The role
of ZIP transporters and group F bZIP transcription factors in the Zn-deficiency
response of wheat (Triticum aestivum)[J]. Plant J, 2017, 92(2): 291-304. DOI:
10.1111/tpj.13655
[21] Li S Z, Zhou X J, Huang Y Q, et al. Identification
and characterization of the zinc-regulated transporters, iron-regulated
transporter-like protein (ZIP) gene family in maize[J]. BMC Plant Biology, 2013, 13:114. DOI:
10.1186/1471-2229-13-114
[22] Astudillo C, Fernandez A C, Blair M W, et al. The
Phaseolus vulgaris ZIP gene family: identification, characterization, mapping,
and gene expression[J]. Front Plant Sci, 2013, 4: 286. DOI: 10.3389/fpls.2013.00286
[23] Huang S, Sasaki A, Yamaji N, et al. The ZIP
Transporter Family Member OsZIP9 Contributes To Root Zinc Uptake in Rice under
Zinc-Limited Conditions[J]. Plant Physiol, 2020, 183(3): 1224-1234. DOI:
10.1104/pp.20.00125
[24] Gasco G, Alvarez M L, Paz-Ferreiro J, et al.
Combining phytoextraction by Brassica napus and biochar amendment for the
remediation of a mining soil in Riotinto (Spain)[J]. Chemosphere, 2019, 231,
562-570. DOI: 10.1016/j.chemosphere.2019.05.168
[25] Zhang F, Xiao X, Wu X. Physiological and molecular
mechanism of cadmium (Cd) tolerance at initial growth stage in rapeseed
(Brassica napus L.)[J]. Ecotoxicol Environ Saf, 2020, 197, 110613. DOI:
10.1016/j.ecoenv.2020.110613
[26] Zeng X, Zou D, Wang A, et al. Remediation of
cadmium-contaminated soils using Brassica napus: Effect of nitrogen
fertilizers[J]. Journal of Environmental Management, 2020, 255: 109885. DOI:
10.1016/j.jenvman.2019.109885
[27] Zhang X D, Meng J G, Zhao K X, et al. Annotation
and characterization of Cd-responsive metal transporter genes in rapeseed
(Brassica napus)[J]. Biometals, 2018, 31(1): 107-121. DOI:
10.1007/s10534-017-0072-4
[28] Chen L, Wan H, Qian J, et al. Genome-Wide
Association Study of Cadmium Accumulation at the Seedling Stage in Rapeseed
(Brassica napus L.)[J]. Front Plant Sci, 2018, 9: 375. DOI:
10.3389/fpls.2018.00375
[29] Meng J G, Zhang X D, Tan S K, et al. Genome-wide
identification of Cd-responsive NRAMP transporter genes and analyzing
expression of NRAMP 1 mediated by miR167 in Brassica napus[J]. Biometals, 2017,
30(6): 917-931. DOI: 10.1007/s10534-017-0057-3
[30] Wang S, Sun J, Li S, et al. Physiological, genomic
and transcriptomic comparison of two Brassica napus cultivars with contrasting
cadmium tolerance[J]. Plant and Soil, 2019, 441(1-2): 71-87. DOI:
10.1007/s11104-019-04083-0
[31] Li N, Xiao H, Sun J, et al. Genome-wide analysis
and expression profiling of the HMA gene family in Brassica napus under cd
stress[J]. Plant and Soil, 2018, 426(1-2): 365-381. DOI:
10.1007/s11104-018-3637-2
[32] Zhang X D, Zhao K X, Yang Z M. Identification of
genomic ATP binding cassette (ABC) transporter genes and Cd-responsive ABCs in
Brassica napus[J]. Gene, 2018, 664, 139-151. DOI: 10.1016/j.gene.2018.04.060
[33] Kaul S, Koo H L, Jenkins J, et al. Analysis of the
genome sequence of the flowering plant Arabidopsis thaliana[J]. nature, 2000,
408(6814): 796-815. DOI: 10.1038/35048692
[34] Wang X, Wang H, Wang J, et al. The genome of the
mesopolyploid crop species Brassica rapa[J]. Nature genetics, 2011, 43(10):
1035-1039. DOI: 10.1038/ng.919
[35] Perumal S, Koh C S, Jin L, et al. A high-contiguity
Brassica nigra genome localizes active centromeres and defines the ancestral
Brassica genome[J]. Nature plants, 2020, 6(8): 929-941. DOI: 10.1038/s41477-020-0735-y
[36] Belser C, Istace B, Denis E, et al. Chromosome-scale
assemblies of plant genomes using nanopore long reads and optical maps[J].
Nature plants, 2018, 4(11): 879-887. DOI: 10.1038/s41477-018-0289-4
[37] Chalhoub B, Denoeud F, Liu S, et al. Early
allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome[J].
science, 2014, 345(6199): 950-953. DOI: 10.1126/science.1253435
[38] Song J M, Guan Z, Hu J, et al. Eight high-quality
genomes reveal pan-genome architecture and ecotype differentiation of Brassica
napus[J]. Nature Plants, 2020, 6(1): 34-45. DOI: 10.1038/s41477-019-0577-7
[39] Song J M, Liu D X, Xie W Z, et al. BnPIR: Brassica
napus Pan‐genome Information Resource for 1,689 accessions[J]. Plant
Biotechnology Journal, 2020, pp. 1–3. DOI: 10.1111/PBI.13491
[40] Hu B, Jin J, Guo A Y, et al. GSDS 2.0: an upgraded
gene feature visualization server[J]. Bioinformatics, 2015, 31(8): 1296-1297.
DOI: 10.1093/bioinformatics/btu817
[41] Bailey T L, Boden M, Buske F A, et al. MEME SUITE:
tools for motif discovery and searching[J]. Nucleic acids research, 2009,
37(suppl_2): W202-W208.3. DOI: 10.1093/nar/gkp335
[42] Lescot M, Déhais P, Thijs G, et al. PlantCARE, a
database of plant cis-acting regulatory elements and a portal to tools for in
silico analysis of promoter sequences[J]. Nucleic acids research, 2002, 30(1):
325-327. DOI: 10.1093/nar/30.1.325
[43] Lu S, Wang J, Chitsaz F, et al. CDD/SPARCLE: the
conserved domain database in 2020[J]. Nucleic acids research, 2020, 48(D1):
D265-D268. DOI: 10.1093/nar/gkz991
[44] Gasteiger E., Hoogland C., Gattiker A., Duvaud S.,
Wilkins M.R., Appel R.D., Bairoch A.;Protein Identification and Analysis Tools
on the ExPASy Server;(In) John M. Walker (ed): The Proteomics Protocols
Handbook, Humana Press (2005).pp. 571-607. DOI: 10.1385/1-59259-890-0:571
[45] Waterhouse A, Bertoni M, Bienert S, et al.
SWISS-MODEL: homology modelling of protein structures and complexes[J]. Nucleic
acids research, 2018, 46(W1): W296-W303. DOI: 10.1093/nar/gky427
[46] Chou K C, Shen H B. Cell-PLoc: a package of Web
servers for predicting subcellular localization of proteins in various
organisms[J]. Nature protocols, 2008, 3(2): 153. DOI: 10.1038/nprot.2007.494
[47] Chen C, Chen H, Zhang Y, et al. TBtools: an
integrative toolkit developed for interactive analyses of big biological
data[J]. Molecular plant, 2020, 13(8): 1194-1202. DOI: 10.1016/j.molp.2020.06.009
[48] Kumar S, Stecher G, Tamura K. MEGA7: molecular
evolutionary genetics analysis version 7.0 for bigger datasets[J]. Molecular
biology and evolution, 2016, 33(7): 1870-1874. DOI: 10.1093/molbev/msw054
[49] Tamura K, Nei M, Kumar S. Prospects for inferring
very large phylogenies by using the neighbor-joining method[J]. Proceedings of
the National Academy of Sciences, 2004, 101(30): 11030-11035. DOI: 10.1073/pnas.0404206101
[50] Wang Y, Tang H, DeBarry J D, et al. MCScanX: a toolkit
for detection and evolutionary analysis of gene synteny and collinearity[J].
Nucleic acids research, 2012, 40(7): e49-e49. DOI: 10.1093/nar/gkr1293
[51] Havlickova L, He Z, Wang L, et al. Validation of an
updated Associative Transcriptomics platform for the polyploid crop species
Brassica napus by dissection of the genetic architecture of erucic acid and
tocopherol isoform variation in seeds[J]. The Plant Journal, 2018, 93(1):
181-192. DOI: 10.1111/tpj.13767
[52] Bolger A M, Lohse M, Usadel B. Trimmomatic: a flexible
trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15): 2114-2120.
DOI: 10.1093/bioinformatics/btu170
[53] Kim D, Paggi J M , Park C , et al. Graph-based
genome alignment and genotyping with HISAT2 and HISAT-genotype[J]. Nature
Biotechnology, 2019, 37(8):1. DOI: 10.1038/s41587-019-0201-4
[54] Liao Y, Smyth G K, Shi W. The Subread aligner:
fast, accurate and scalable read mapping by seed-and-vote[J]. Nucleic acids
research, 2013, 41(10): e108-e108. DOI: 10.1093/nar/gkt214
[55] Di F, Jian H, Wang T, et al. Genome-Wide Analysis
of the PYL Gene Family and Identification of PYL Genes That Respond to Abiotic
Stress in Brassica napus[J]. Genes, 2018, 9(3): 156. DOI: 10.3390/genes9030156
[56] Liang Y, Xiong Z, Zheng J, et al. Genome-wide
identification, structural analysis and new insights into late embryogenesis
abundant (LEA) gene family formation pattern in Brassica napus[J]. Sci Rep,
2016, 6: 24265. DOI: 10.1038/srep24265
[57] 宋敏, 张瑶, 王丽莹, 等. 甘蓝型油菜ZF-HD基因家族的鉴定与系统进化分析[J]. 植物学报, 2019, 54(6): 699–710. DOI: 10.11983/CBB19055
[58] 贾永鹏,李开祥,昝领兄, 等. 甘蓝型油菜全基因组 DELLA 蛋白基因家族的鉴定和表达分析[J].中国油料作物学报, 2019, 41( 3) : 360-368. DOI: 10. 7505/j. issn. 1007-9084. 2019. 03. 007
[59] Lin Y F, Aarts M G M. The molecular mechanism of
zinc and cadmium stress response in plants[J]. Cellular and Molecular Life
Sciences, 2012, 69(19): 3187–3206. DOI: 10.1007/s00018-012-1089-z
[60] Krishna A T P, Maharajan T, Roch G V, et al.
Structure, Function, Regulation and Phylogenetic Relationship of ZIP Family
Transporters of Plants[J]. Front Plant Sci, 2020, 11: 662. DOI:
10.3389/fpls.2020.00662
|