
Photosynthetic physiological response mechanism of Cyperus esculentus L. seedlings under saline alkali stress
Rong TANG, Chen-li GUO, Pei-xin LIANG, Rui GUO, Teng-fei WANG, Huang-cheng HE, Jian-guo LIU
CHINESE JOURNAL OF OIL CROP SCIENCES ›› 2022, Vol. 44 ›› Issue (3) : 632-641.
Photosynthetic physiological response mechanism of Cyperus esculentus L. seedlings under saline alkali stress
The objective of this study was to explore the photosynthetic physiological responses of Cyperus esculentus seedlings under different concentrations of saline-alkali stress, and to reveal the salt tolerance mechanism and salt-alkali resistance ability, it was expected to provide a theoretical basis for large-scale cultivation and reasonable planting areas division of C. esculentus in Xinjiang. Two kinds of neutral salts (NaCl and Na2SO4) and two alkaline salts (NaHCO3 and Na2CO3) were used to prepare the corresponding solution at the ratio of 2:1 for stress treatment. The low, medium and high concentrations were 80, 160, 320 mmol·L-1 and 40, 80, 120 mmol·L-1, respectively for salt and alkaline stress treatments. The chlorophyll content, photosynthetic parameters and fluorescence parameters were measured after 15 days of seedling emergence. The results showed that the contents of chlorophyll a (Chl a), chlorophyll b (Chl b), total chlorophyll (Chl T), carotenoid content (Car), net photosynthesis (Pn), stomatal conductance (Gs) and transpiration rate (Tr) were decreased, while the maximum fluorescence (Fm), actual photochemical efficiency (ΦPSⅡ) , maximal photochemical efficiency (Fv/Fm) and photochemical quenching coefficient (qP) were inhibited, and non regulatory energy dissipation (Y(NO)) was increased with the stress degree increasing. We observed that Pn positively correlated with Gs, Tr, Chl a (P<0.01), and with Car, Chl T, Fm, ΦPSⅡ, qP at 0.05 level, but negatively correlated with Y(NO). These results suggested that the main reason of the decrease of photosynthetic rate under saline-alkali stress is related to the decrease of Gs, Tr and Chl a. Moreover, the dynamic balance of water supply and photosynthetic system could be maintained by reducing Gs, Tr, leaf water content (WC), increasing water use efficiency (WUE) and initiating heat. There was higher inhibition degree of alkaline stress than that of salt stress at the same concentration.
Cyperus esculentus L. / saline-alkali stress / photosynthetic pigment / photosynthetic parameters / chlorophyll fluorescence parameters {{custom_keyword}} /
Table 1 Salt composition,molar ratio and pH of solutions for mixed salt treatments表1 各处理液盐分组成、摩尔比及pH值 |
处理 Treatment | 盐分组成及摩尔比 Salt composition and molar ratio | 盐碱浓度Saline alkali concentration /(mmol·L-1) | pH | ||||
---|---|---|---|---|---|---|---|
NaCl | Na2SO4 | NaHCO3 | Na2CO3 | ||||
CK | 0 | 0 | 0 | 0 | 0 | 6.87 | |
盐胁迫 Salt stress | 低Low | 2 | 1 | 0 | 0 | 80 | 7.06 |
中Medium | 2 | 1 | 0 | 0 | 160 | 8.21 | |
高High | 2 | 1 | 0 | 0 | 320 | 9.44 | |
碱胁迫Alkali stress | 低Low | 0 | 0 | 2 | 1 | 40 | 10.12 |
中Medium | 0 | 0 | 2 | 1 | 80 | 10.26 | |
高High | 0 | 0 | 2 | 1 | 120 | 10.36 |
Fig. 1 Effects of different saline-alkali stresses on photosynthetic pigment contents of Cyperus esculentus leaves图1 盐碱胁迫对油莎豆幼苗叶片光合色素含量的影响 |
Table 2 Effects of different saline-alkali stress on photosynthetic parameters of C. esculentus leaves表2 不同盐碱胁迫对油莎豆幼苗叶片光合参数的影响 |
处理 Treatment | 处理浓度 Concentration / (mmol·L-1) | 净光合速率 Net photosynthetic rate (Pn) / ( μmol·m-2·s-1 ) | 气孔导度 Stomatal conductance (Gs) / ( mol·m-2·s-1) | 胞间 CO2浓度 Intercellular CO2 concentration (Ci) / (μmol·mol-1) | 蒸腾速率 Transpiration (Tr) / (mmol·m-2·s-1) | 叶片含水量 Leaf water content (WC) /% | 水分利用效率 Water use efficiency (WUE) / (μmol·mmol-1) |
---|---|---|---|---|---|---|---|
盐胁迫 Salt stress | 0 | 11.10±0.75a | 0.1130±0.0182a | 265±15.87ab | 4.03±0.43a | 85.21±0.34a | 2.75±0.18b |
80 | 7.18±0.16b | 0.0468±0.0012b | 222±21.08b | 1.83±0.01b | 83.48±0.20b | 3.93±0.07a | |
160 | 2.75±0.74c | 0.0238±0.0039c | 259±13.65ab | 0.99±0.16c | 84.61±0.58a | 2.78±0.32b | |
320 | 0.95±0.12d | 0.0161±0.0016c | 307±55.68a | 0.67±0.06c | 82.39±0.40c | 1.50±0.21b | |
碱胁迫 Alkali stress | 40 | 6.25±1.15b | 0.0466±0.0053b | 251±81.08a | 1.88±0.18b | 83.82±0.61b | 3.27±0.49b |
80 | 3.70±0.88c | 0.0276±0.0077c | 220±23.86ab | 1.15±0.32c | 83.76±0.44b | 3.22±0.14b | |
120 | 3.81±0.47c | 0.0234±0.0035c | 147±10.26b | 0.98±0.12c | 83.29±0.66b | 3.91±0.23a |
Table 3 The correlation analysis of C. esculentus indexes under saline-alkali stress表3 盐碱胁迫下油莎豆各指标的相关性分析 |
Pn | Gs | Ci | Tr | WC | WUE | Chl a | Chl b | Car | Chl T | |
---|---|---|---|---|---|---|---|---|---|---|
Pn | 1 | |||||||||
Gs | 0.946** | 1 | ||||||||
Ci | -0.05 | 0.169 | 1 | |||||||
Tr | 0.957** | 0.999** | 0.155 | 1 | ||||||
WC | 0.667 | 0.708 | 0.44 | 0.713 | 1 | |||||
WUE | 0.363 | 0.7 | -0.86* | 0.099 | 0.17 | 1 | ||||
Chl a | 0.890** | 0.75 | -0.4 | 0.770* | 0.483 | 0.471 | 1 | |||
Chl b | 0.559 | 0.557 | 0.538 | 0.567 | 0.595 | -0.075 | 0.654 | 1 | ||
Car | 0.793* | 0.601 | -0.404 | 0.617 | 0.357 | 0.706 | 0.907** | 0.35 | 1 | |
Chl T | 0.868* | 0.753 | 0.103 | 0.772* | 0.544 | 0.365 | 0.982** | 0.787* | 0.829* | 1 |
Pn | F0 | Fm | Fv /Fm | ΦPSⅡ | Y(NPQ) | Y(NO) | qP | qN | ||
Pn | 1 | |||||||||
F0 | 0.413 | 1 | ||||||||
Fm | 0.807* | 0.821* | 1 | |||||||
Fv /Fm | 0.728 | 0.015 | 0.561 | 1 | ||||||
ΦPSⅡ | 0.800* | 0.027 | 0.580 | 0.917** | 1 | |||||
Y(NPQ) | 0.223 | 0.709 | 0.466 | -0.220 | -0.117 | 1 | ||||
Y(NO) | -0.860* | -0.332 | -0.762* | -0.807* | -0.9** | -0.312 | 1 | |||
qP | 0.872* | 0.045 | 0.576 | 0.889** | 0.949** | -0.007 | -0.893** | 1 | ||
qN | 0.581 | 0.743 | 0.731 | 0.197 | 0.263 | 0.903** | -0.651 | 0.365 | 1 |
Table 4 Rotated component matrix of principal component analysis表4 主成分分析的成分载荷矩阵 |
第一主成分 The first principal component | 第二主成分 The second principal component | 第三主成分 The third principal component | 第一主成分 The first principal component | 第二主成分 The second principal component | 第三主成分 The third principal component | ||
---|---|---|---|---|---|---|---|
Pn | 0.968 | 0.017 | -0.18 | Fv /Fm | 0.796 | -0.578 | 0.038 |
Gs | 0.911 | -0.272 | -0.204 | ΦPSⅡ | 0.842 | -0.464 | 0.039 |
Ci | 0.101 | -0.812 | 0.524 | Y(NPQ) | 0.278 | 0.754 | 0.545 |
Tr | 0.927 | -0.237 | -0.178 | Y(NO) | -0.931 | 0.129 | -0.279 |
WC | 0.673 | -0.057 | -0.287 | qP | 0.872 | -0.415 | 0.028 |
WUE | 0.295 | 0.886 | -0.292 | qN | 0.644 | 0.561 | 0.462 |
Car | 0.775 | 0.41 | -0.288 | 特征值 Eigen values | 9.169 | 4.055 | 1.244 |
Chl T | 0.946 | 0.09 | 0.082 | 方差贡献率 Proportion of variance /% | 57.305 | 25.346 | 7.778 |
F0 | 0.495 | 0.756 | 0.113 | 累计贡献率 Cumulative variance /% | 57.305 | 82.651 | 90.429 |
Fm | 0.889 | 0.331 | 0.051 |
Table 5 The comprehensive score and ranking of C. esculentus underdifferent saline-alkali stress表5 油莎豆不同盐碱处理的综合得分及其排名 |
处理 Treatment | 综合得分排名 Comprehensive score ranking | 综合得分(F) Comprehensive score | 综合得分排名 Comprehensive score ranking | |||
---|---|---|---|---|---|---|
PC1 ( F1) | PC2 ( F2) | PC3 ( F3) | ||||
CK | 4.908 41 | -2.221 98 | -0.548 15 | 2.206 946 | 1 | |
盐胁迫 Salt stress | 低low | 2.214 05 | 1.138 31 | 0.258 19 | 1.577 357 | 2 |
中medium | -1.727 11 | -0.590 30 | -0.350 45 | -1.166 594 | 5 | |
高high | -3.568 48 | -3.140 16 | 0.057 32 | -2.836 365 | 7 | |
碱胁迫 Alkali stress | 低low | 1.582 81 | 1.472 25 | 2.259 08 | 1.455 895 | 3 |
中medium | -0.712 18 | 1.428 68 | 0.092 87 | -0.038 781 | 4 | |
高high | -2.697 49 | 1.913 20 | -1.768 85 | -1.198 459 | 6 |
1 |
杨敏, 田丽萍, 薛琳. 不同油莎豆品种在新疆干旱气候区的产量表现与品质差异[J]. 中国油料作物学报, 2013, 35(4): 451-454. DOI:10.7505/j.issn.1007-9084.2013.04.017 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
杨帆, 朱文学. 油莎豆研究现状及展望[J]. 粮食与油脂, 2020, 33(7): 4-6.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
王瑞元, 王晓松, 相海. 一种多用途的新兴油料作物: 油莎豆[J]. 中国油脂, 2019, 44(1): 1-4. DOI:10.3969/j.issn.1003-7969.2019.01.001 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
乔木, 周生斌, 卢磊, 等. 近25a来塔里木盆地灌区土壤盐渍化时空变化特点与改良治理对策[J]. 干旱区地理, 2011, 34(4): 604-613. DOI:10.13826/j.cnki.cn65-1103/x.2011.04.013 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
田长彦, 周宏飞, 刘国庆. 21世纪新疆土壤盐渍化调控与农业持续发展研究建议[J]. 干旱区地理, 2000, 23(2): 177-181. DOI:10.13826/j.cnki.cn65-1103/x.2000.02.017 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
曹磊, 陈伟楠, 胡增辉, 等. 盐碱胁迫对槲树幼苗生长与光合特性的影响[J]. 北京农学院学报, 2018, 33(4): 86-90. DOI:10.13473/j.cnki.issn.1002-3186.2018.0418 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
张丽华, 王晓立, 王梦秋, 等. 苏打盐碱胁迫对香樟幼苗光合特性的影响[J]. 北方园艺, 2012(23): 91-93.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
张潭, 唐达, 李思思, 等. 盐碱胁迫对枸杞幼苗生物量积累和光合作用的影响[J]. 西北植物学报, 2017, 37(12): 2474-2482. DOI:10.7606/j.issn.1000-4025.2017.12.2474 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
刘庚, 陈士刚, 才巨峰, 等. 盐碱胁迫对唐古特白刺苗期光合特性的影响[J]. 吉林林业科技, 2020, 49(5): 16-20. DOI:10.16115/j.cnki.issn.1005-7129.2020.05.005 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
尹宝丝. 盐胁迫对黑枸杞幼苗生长及光合特性的影响[D]. 北京: 北京林业大学, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
刘兵, 贾旭梅, 朱祖雷, 等. 盐碱胁迫对垂丝海棠光合作用及渗透调节物质的影响[J]. 西北植物学报, 2019, 39(9): 1618-1626. DOI:10.7606/j.issn.1000-4025.2019.09.1618 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
王振兴, 吕海燕, 秦红艳, 等. 盐碱胁迫对山葡萄光合特性及生长发育的影响[J]. 西北植物学报, 2017, 37(2): 339-345. DOI:10.7606/j.issn.1000-4025.2017.02.0339 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
刘建新, 王金成, 王瑞娟, 等. 盐、碱胁迫对燕麦幼苗光合作用的影响[J]. 干旱地区农业研究, 2015, 33(6): 155-160. DOI:10.7606/j.issn.1000-7601.2015.06.26 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
张志刚, 尚庆茂. 低温、弱光及盐胁迫下辣椒叶片的光合特性[J]. 中国农业科学, 2010, 43(1): 123-131.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
贾旭梅, 朱燕芳, 王海, 等. 垂丝海棠应对盐碱复合胁迫的生理响应[J]. 生态学报, 2019, 10(17): 6349-6361. DOI:10.5846/stxb201804230919 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
洪鑫. 盐碱胁迫对甜菜生长及光合特性的影响[D]. 哈尔滨: 东北农业大学, 2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
孙璐, 周宇飞, 李丰先, 等. 盐胁迫对高粱幼苗光合作用和荧光特性的影响[J]. 中国农业科学, 2012, 45(16): 3265-3272. DOI:10.3864/j.issn.0578-1752.2012.16.005 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
杨慧杰, 原向阳, 郭平毅, 等. 油菜素内酯对阔世玛胁迫下谷子叶片光合荧光特性及糖代谢的影响[J]. 中国农业科学, 2017, 50(13): 2508-2518. DOI:10.3864/j.issn.0578-1752.2017.13.010 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
金微微, 张会慧, 滕志远, 等. 盐碱互作胁迫对高丹草叶片叶绿素荧光参数的影响[J]. 草业科学, 2017, 34(10): 2090-2098. DOI:10.11829/j.issn.1001-0629.2017-0065 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
34 |
邵华伟, 孙九胜, 胡伟, 等. 新疆盐碱地分布特点和成因及改良利用技术研究进展[J]. 黑龙江农业科学, 2014(11): 160-164.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
Collection(s)
/
〈 |
|
〉 |