CHINESE JOURNAL OF OIL CROP SCIENCES ›› 2021, Vol. 43 ›› Issue (3): 361-.doi: 10.19802/j.issn.1007-9084.2021097
Online:
2021-06-28
Published:
2021-06-30
CLC Number:
FAN Shi-hang, LIU Nian, HUA Wei. Research advances in the biosynthesis and regulation of lipid in oil crops[J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(3): 361-.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jouroilcrops.cn/EN/10.19802/j.issn.1007-9084.2021097
[1] Graham I A. Seed Storage Oil Mobilization[J]. Annual review of plant biology, 2008, 59(1): 115-142. [2] Harwood J L. Recent advances in the biosynthesis of plant fatty acids[J]. Biochimica et Biophysica Acta - Lipids Lipid Metabolism, 1996, 1301(1-2): 7-56. [3] Turnham E, Northcote D H. Changes in the activity of acetyl-CoA carboxylase during rape-seed formation[J]. Biochemical Journal, 1983, 212(1): 223-229. [4] Weselake R J, Taylor D C, Rahman M H, et al. Increasing the flow of carbon into seed oil[J]. Biotechnology Advances, 2009, 27(6): 866-878. [5] Baud S, Lepiniec L. Physiological and developmental regulation of seed oil production[J]. Progress in Lipid Research, 2010, 49(3): 235-249. [6] Murphy D J, Vance J. Mechanisms of lipid-body formation[J]. Trends in Biochemical Sciences, 1999, 24(3): 109-115. [7] Siloto, Mp R. The Accumulation of Oleosins Determines the Size of Seed Oilbodies in Arabidopsis[J]. The Plant cell, 2006, 18(8): 1961-1974. [8] He Y, Wu Y. Oil Body Biogenesis during Brassica napus Embryogenesis[J]. Journal of integrative plant biology, 2009, 08(v.51): 78-85. [9] Wong Y, Teh H, Mebus K, et al. Differential gene expression at different stages of mesocarp development in high- and low-yielding oil palm[J]. BMC genomics, 2017, 18(1): 470. [10] 程子彰, 贺靖舒, 占明明, 等. 油橄榄果生长与成熟过程中油脂的合成[J]. 林业科学, 2014, 50(5): 123-131. [11] Liu Q, Sun Y, Chen J, et al. Transcriptome analysis revealed the dynamic oil accumulation in Symplocos paniculata fruit[J]. BMC genomics, 2016, 17(1): 929. [12] 高昌勇. 植物营养组织油脂代谢工程[D]. City: 山西农业大学, 2016. [13] Stoller E, Weber E. Differential cold tolerance, starch, sugar, protein, and lipid of yellow and purple nutsedge tubers[J]. Plant physiology, 1975, 55(5): 859-863. [14] Boem F, Lavado R S, Porcelli C A. Note on the effects of winter and spring waterlogging on growth, chemical composition and yield of rapeseed[J]. Field Crops Research, 1996, 47(2-3): 175-179. [15] Jensen C R, Mogensen V O, Mortensen G, et al. Seed glucosinolate, oil and protein contents of field-grown rape (Brassica napus L.) affected by soil drying and evaporative demand[J]. Field Crops Research, 1996, 47(2-3): 93-105. [16] Ping S, Mailer R J, Galwey N, et al. Influence of genotype and environment on oil and protein concentrations of canola (Brassica napus L.) grown across southern Australia[J]. Crop Pasture Science, 2003, 54(4): 397-407. [17] Wu J G, Shi C H, Zhang H Z. Partitioning genetic effects due to embryo, cytoplasm and maternal parent for oil content in oilseed rape (Brassica napus L.)[J]. Genetics Molecular biology and evolution, 2006, 29(3). [18] Grami B, Stefansson B R, Baker R J. GENETICS OF PROTEIN AND OIL CONTENT IN SUMMER RAPE: HERITABILITY, NUMBER OF EFFECTIVE FACTORS, AND CORRELATIONS[J]. Canadian Journal of Plant Science, 1977, 57(3): 937-943. [19] 韩继祥. 甘蓝型油菜含油量的遗传研究[J]. 中国油料, 1990, (2): 1-6. [20] 王通强. 油菜籽含油量的遗传及杂种优势[J]. 贵州农业科学, 1992, 000(006): 37-40. [21] 甘功勋, 林树春. 油菜含油量研究及高油分育种[J]. 种子, 1997, (01): 31-33. [22] Hua W, Li R J, Zhan G M, et al. Maternal control of seed oil content in Brassica napus: the role of silique wall photosynthesis[J]. The Plant Journal, 2011. [23] 赵永国, 陆光远. 棉子含油量的遗传特性分析[J]. 湖北农业科学, 2019, 058(004): 14-17. [24] 张胜忠, 焦坤, 胡晓辉, 等. 花生百仁质量和含油量的遗传分析[J]. 花生学报, 2018, 47(04): 7-12. [25] Wang X, Liu G, Yang Q, et al. Genetic analysis on oil content in rapeseed (Brassica napus L.)[J]. Euphytica, 2010, 173(1): 17-24. [26] Tao D, Hu F, Yang J, et al. Cytoplasm and cytoplasm-nucleus interactions affect agronomic traits in japonica rice[J]. Euphytica, 2004, 135(1): 129-134. [27] Shi C, Zhu J. Genetic analysis of cytoplasmic and maternal effects for milling quality traits in indica rice[J]. Seed Science and Technology, 1998. [28] Shi C H, Zhu J, Wu J G, et al. Analysis of embryo, endosperm, cytoplasmic and maternal effects for heterosis of protein and lysine content in indica hybrid rice[J]. Plant Breeding, 1999, 118(6): 574-576. [29] Tang Z, Yang Z, Hu Z, et al. Cytonuclear epistatic quantitative trait locus mapping for plant height and ear height in maize[J]. Molecular Breeding, 2013, 31(1): 1-14. [30] Hunter R B, Gamble E E. Effect of Cytoplasmic Source on the Performance of Double-Cross Hybrids in Maize, Zea mays L.1[J]. Crop Science, 1968, 8(3). [31] Seka D, Cross H Z. Xenia and Maternal Effects on Maize Kernel Development[J]. Crop Science, 1995, 35(1). [32] Ekiz H, Kiral A S, Akin A, et al. Cytoplasmic effects on quality traits of bread wheat (Triticum aestivum L.)[J]. Euphytica, 1998, 100(1): 189-196. [33] Singh L, Hadley H H. Maternal and Cytoplasmic Effects on Seed Protein Content in Soybeans, Glycine max (L.) Merrill1[J]. Cropence, 1972, 12(5). [34] Mosjidis J A, Yermanos D M. Maternal effects and cytoplasmic inheritance of oleic and linoleic acid contents in sesame[J]. Euphytica, 1984, 33(2): 427-432. [35] Wu J G, Shi C H, Zhang H Z. Genetic analysis of embryo, cytoplasmic, and maternal effects and their environment interactions for protein content in Brassica napus L[J]. Australian Journal of Agricultural Research, 2005, 56(1): 69-73. [36] Liu J, Hua W, Hu Z, et al. Natural variation in ARF18 gene simultaneously affects seed weight and silique length in polyploid rapeseed[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015: E5123. [37] Chen G, Wu J, Shi C, et al. Dynamic Genetic Effects on Threonine Content in Rapeseed (Brassica napus L.) Meal at Different Developmental Stages[J]. Czech Journal of Genetics, 2011, 47(3): 101-113. [38] Rajcan I, Kasha K J, Kott L S, et al. Evaluation of cytoplasmic effects on agronomic and seed quality traits in two doubled haploid populations of Brassica napus L[J]. Euphytica, 2002, 123(3): 401-409. [39] Fick G N. Heritability of Oil Content in Sunflowers1[J]. Crop Science, 1975, 15(1): 77-78. [40] Liu J, Hao W, Liu J, et al. A Novel Chimeric Mitochondrial Gene Confers Cytoplasmic Effects on Seed Oil Content in Polyploid Rapeseed ( Brassica napus )[J]. Molecular plant, 2019. [41] Gilsinger J J, Burton J W, Carter T E. Maternal Effects on Fatty Acid Composition of Soybean Seed Oil[J]. Crop Science, 2010, 50(5). [42] Qiu D, Morgan C, Shi J, et al. A comparative linkage map of oilseed rape and its use for QTL analysis of seed oil and erucic acid content[J]. Theoretical & Applied Genetics, 2006, 114(1): 67-80. [43] Yan X Y, Li J N, Fu F Y, et al. Co-location of seed oil content, seed hull content and seed coat color QTL in three different environments in Brassica napus L[J]. Euphytica, 2009, 170(3): 355-364. [44] Chen G, Geng J, Rahman M, et al. Identification of QTL for oil content, seed yield, and flowering time in oilseed rape (Brassica napus)[J]. Euphytica, 2010, 175(2): 161-174. [45] Smooker A M, Wells R, Morgan C, et al. The identification and mapping of candidate genes and QTL involved in the fatty acid desaturation pathway in Brassica napus[J]. Theoretical and applied genetics, 2011. [46] Zhao Y, Wang M, Fu S, et al. Small RNA profiling in two Brassica napus cultivars identifies microRNAs with oil production- and development-correlated expression and new small RNA classes[J]. Plant physiology, 2012, 158(2): 813-823. [47] 孙美玉. 甘蓝型油菜含油量QTLs定位及候选基因筛选[D]. City: 中国农业科学院, 2012. [48] Delourme R, Falentin C, Huteau V, et al. Genetic control of oil content in oilseed rape (Brassica napus L.)[J]. Theoretical and applied genetics, 2006. [49] Zou J, Jiang C, Cao Z, et al. Association mapping of seed oil content in Brassica napus and comparison with quantitative trait loci identified from linkage mapping[J]. Genome biology, 2010, 53(11): 908. [50] Burns M, Barnes S, Bowman J, et al. QTL analysis of an intervarietal set of substitution lines in Brassica napus: (i) Seed oil content and fatty acid composition[J]. Heredity, 2003, 90(1): 39-48. [51] Sun M, Wei H, Jing L, et al. Design of New Genome- and Gene-Sourced Primers and Identification of QTL for Seed Oil Content in a Specially High-Oil Brassica napus Cultivar[J]. PloS one, 2012, 7. [52] Jiang C, Shi J, Li R, et al. Quantitative trait loci that control the oil content variation of rapeseed (Brassica napus L.)[J]. Theoretical Applied Genetics, 2014. [53] Sun F, Liu J, Hua W, et al. Identification of stable QTLs for seed oil content by combined linkage and association mapping in Brassica napus[J]. Plant Science, 2016, 252: 388-399. [54] Liu S, Fan C, Li J, et al. A genome-wide association study reveals novel elite allelic variations in seed oil content of Brassica napus[J]. Theoretical Applied Genetics, 2016, 129(6): 1203-1215. [55] Nina B, Edy S, Christian M. A major QTL on chromosome C05 significantly reduces acid detergent lignin (ADL) content and increases seed oil and protein content in oilseed rape (Brassica napus L.)[J]. Theoretical Applied Genetics, 2018, 131. [56] Tang S, Zhao H, Lu S, et al. Genome- and transcriptome-wide association studies provide insights into the genetic basis of natural variation of seed oil content in Brassica napus[J]. Molecular plant, 2020. [57] 吴晓雷, 王永军, 贺超英, 等. 大豆重要农艺性状的QTL分析[J]. 遗传学报, 2001, (10): 947-955. [58] 姚丹, 王丕武, 闫伟, 等. 完备区间作图法定位大豆含油量QTL及标记辅助选择[J]. 中国油料作物学报, 2010, 32(003): 369-373. [59] Li Z, Wilson R F, Rayford W E, et al. Molecular Mapping Genes Conditioning Reduced Palmitic Acid Content in N87-2122-4 Soybean[J]. Crop Science, 2002, 42(2): 373-378. [60] Spencer M, Pantalone V, Meyer E, et al. Mapping the Fas locus controlling stearic acid content in soybean[J]. Theoretical and applied genetics, 2003, 106(4): 615-619. [61] 单大鹏, 齐照明, 邱红梅, 等. 大豆油分含量相关的QTL间的上位效应和QE互作效应[J]. 作物学报, 2008, 34(006): 952-957. [62] 郑永战. 我国大豆种质资源脂肪性状的变异,遗传与基因定位的研究[D]. City: 南京农业大学, 2006. [63] 苗兴芬, 胡国华, 朱命喜, 等. 大豆脂肪酸含量的QTL分析[J]. 作物学报, 2010, 036(009): 1498-1505. [64] 刘华. 栽培种花生产量和品质相关性状遗传分析与QTL定位研究[D]. City: 河南农业大学, 2011. [65] Sarvamangala C, Gowda M, Varshney R K. Identification of quantitative trait loci for protein content, oil content and oil quality for groundnut (Arachis hypogaea L.)[J]. Field Crops Research, 2011, 122(1): 49-59. [66] Pandey M K, Wang M L, Qiao L, et al. Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in peanut (Arachis hypogaeaL.)[J]. BMC Genetics, 2014. [67] Wang M L, Pawan K, Pandey M K, et al. Genetic Mapping of QTLs Controlling Fatty Acids Provided Insights into the Genetic Control of Fatty Acid Synthesis Pathway in Peanut (Arachis hypogaea L.)[J]. PloS one, 2015, 10(4): e0119454. [68] Huang L, He H, Chen W, et al. Quantitative trait locus analysis of agronomic and quality-related traits in cultivated peanut (Arachis hypogaea L.)[J]. Theoretical and applied genetics, 2015, 128(6): 1103-1115. [69] 李新平, 徐志军, 蔡岩, 等. 花生主要品质性状的QTL定位分析[J]. 中国油料作物学报, 2016, 38(004): 415-422. [70] 曲艺伟. 花生脂肪酸QTL初步定位[D]. City: 吉林农业大学, 2019. [71] Liu S, Fan C, Li J, et al. A genome-wide association study reveals novel elite allelic variations in seed oil content of Brassica napus[J]. Theoretical and applied genetics, 2016. [72] 魏大勇, 崔艺馨, 梅家琴, et al. 油菜种子含油量GWAS分析及位点整合系统构建[J]. 作物学报, 2018, 44(09): 53-61. [73] 周金枝. 基于GWAS和eQTL分析鉴定甘蓝型油菜含油量相关位点[D]. City: 华中农业大学, 2019. [74] Hwang E Y, Song Q, Jia G, et al. A genome-wide association study of seed protein and oil content in soybean[J]. BMC genomics, 2014, 15(1): 1-1. [75] 陆亮. 中国栽培大豆籽粒油脂性状的遗传变异及油脂代谢相关基因GmDGK7和GmTPR的分子标记开发[D]. City: 南京农业大学, 2015. [76] Leamy L J, Zhang H, Li C, et al. A genome-wide association study of seed composition traits in wild soybean (Glycine soja)[J]. BMC genomics, 18(1): 3-15. [77] 赵彦朋, 梁伟, 王丹, 等. 植物油脂合成调控与遗传改良研究进展[J]. 中国农业科技导报, 2018, 20(001): 14-24. [78] Ding L N, Gu S L, Zhu F G, et al. Long-chain acyl-CoA synthetase 2 is involved in seed oil production in Brassica napus[J]. BMC Plant Biology, 2020, 20(1): 21. [79] Simon J W, Slabas A R. cDNA cloning of Brassica napus malonyl-CoA:ACP transacylase (MCAT) (fab D) and complementation of an E. coli MCAT mutant[J]. FEBS letters, 1998, 435(2-3): 204-206. [80] Sheldon P, Kekwick R, Smith C, et al. 3-Oxoacyl-[ACP] reductase from oilseed rape (Brassica napus)[J]. Biochimica et biophysica acta, 1992, 1120(2): 151-159. [81] Slabas A R, Cottingham I, Austin A, et al. Amino acid sequence analysis of rape seed (Brassica napus) NADH-enoyl ACP reductase[J]. Plant molecular biology, 1991, 17(4): 911-914. [82] Fawcett T, Simon W J, Swinhoe R, et al. Expression of mRNA and steady-state levels of protein isoforms of enoyl-ACP reductase from Brassica napus[J]. Plant molecular biology, 1994, 26(1): 155. [83] Knutzon D, Thompson G, Radke S, et al. Modification of Brassica seed oil by antisense expression of a stearoyl-acyl carrier protein desaturase gene[J]. Proceedings of the National Academy of Sciences of the United States of America, 1992, 89(7): 2624-2628. [84] Bourgis F. A Plastidial Lysophosphatidic Acid Acyltransferase from Oilseed Rape[J]. Plant physiology, 1999, 120(3): 913-921. [85] Nykiforuk C L, Furukawastoffer T L, Huff P W, et al. Characterization of cDNAs encoding diacylglycerol acyltransferase from cultures of Brassica napus and sucrose-mediated induction of enzyme biosynthesis[J]. Biochimica et biophysica acta, 2002, 1580(2): 95-109. [86] Wang H W, Zhang J S, Gai J Y, et al. Cloning and comparative analysis of the gene encoding diacylglycerol acyltransferase from wild type and cultivated soybean[J]. Theoretical and applied genetics, 2006, 112(6): 1086-1097. [87] Chen B B, Wang J, Zhang G, et al. Two types of soybean diacylglycerol acyltransferases are differentially involved in triacylglycerol biosynthesis and response to environmental stresses and hormones[J]. Scientific reports, 2016, 6(1): 28541. [88] Thelen J J, Ohlrogge J B. Metabolic Engineering of Fatty Acid Biosynthesis in Plants[J]. Metabolic Engineering, 2002, 4(1): 12-21. [89] 鲁中爽, 刘思言, 李广隆, 等. 大豆油脂的合成途径及关键酶GPAT基因的研究进展[J]. 广东农业科学, 2018, 045(011): 7-13. [90] Heppard E P, Kinney A J, Stecca K L, et al. Developmental and growth temperature regulation of different microsomal ??-6 desaturase genes in soybeans[J]. Plant physiology, 1996, 110(1): 311-319. [91] Pham A T, Shannon J G, Bilyeu K D. Combinations of mutant FAD2 and FAD3 genes to produce high oleic acid and low linolenic acid soybean oil[J]. Theoretical and applied genetics, 2012, 125(3): 503-515. [92] Haun W, Coffman A, Clasen B M, et al. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family[J]. Plant Biotechnology Journal, 2015, 12(7): 934-940. [93] Roesler K. Targeting of the Arabidopsis Homomeric Acetyl-Coenzyme A Carboxylase to Plastids of Rapeseeds[J]. Plant physiology, 1997, 113(1): 75-81. [94] Vigeolas H, Waldeck P, Zank T, et al. Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter[J]. Plant Biotechnology Journal, 2010, 5(3): 431-441. [95] Weselake Rj S S, Tang M, Quant Pa, Snyder Cl, Furukawa-Stoffer Tl, Zhu W, Taylor Dc, Zou J, Kumar a, Hall L, Laroche a, Rakow G, Raney P, Moloney Mm, Harwood Jl. Metabolic control analysis is helpful for informed genetic manipulation of oilseed rape (Brassica napus) to increase seed oil content[J]. Journal of experimental botany, 2008, 59(13): 3543. [96] Tan H, Yang X, Zhang F, et al. Enhanced Seed Oil Production in Canola by Conditional Expression of Brassica napus LEAFY COTYLEDON1 and LEC1-LIKE in Developing Seeds[J]. Plant physiology, 2011, 156(3): 1577-1588. [97] Elahi N, Duncan R W, Stasolla C. Decreased seed oil production in FUSCA3 Brassica napus mutant plants[J]. Plant Physiology & Biochemistry Ppb, 2015. [98] Liu J, Wei H, Zhan G, et al. Increasing seed mass and oil content in transgenic Arabidopsis by the overexpression of wri1-like gene from Brassica napus[J]. Plant Physiology and Biochemistry, 2010, 48(1): 9-15. [99] Chen B, Zhang G, Li P, et al. Multiple Gm WRI 1s are redundantly involved in seed filling and nodulation by regulating plastidic glycolysis, lipid biosynthesis, and hormone signaling in soybean ( Glycine max )[J]. Plant Biotechnology Journal, 2019. [100] Liu Y F, Li Q T, Lu X, et al. Soybean GmMYB73 promotes lipid accumulation in transgenic plants[J]. BMC Plant Biology, 2014, 14(1): 73. [101] Song Q, Li Q, Liu Y, et al. Soybean GmbZIP123 gene enhances lipid content in the seeds of transgenic Arabidopsis plants[J]. Journal of experimental botany, 2013, 64(14): 4329-4341. [102] Wang H, Zhang B, Hao Y, et al. The soybean Dof-type transcription factor genes, GmDof4 and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants[J]. The Plant journal: for cell molecular biology and evolution, 2007, 52(4): 716-729. [103] Lu X, Li Q, Xiong Q, et al. The transcriptomic signature of developing soybean seeds reveals the genetic basis of seed trait adaptation during domestication[J]. The Plant journal: for cell molecular biology and evolution, 2016, 86(6): 530-544. [104] Ding L N, Guo X J, Li M, et al. Improving seed germination and oil contents by regulating the GDSL transcriptional level in Brassica napus[J]. Plant cell reports, 2018. [105] Kelly A A, Shaw E, Powers S J, et al. Suppression of the SUGAR-DEPENDENT1 triacylglycerol lipase family during seed development enhances oil yield in oilseed rape (Brassica napus L.)[J]. Plant Biotechnology Journal, 2013, 11. [106] Liu J, Hua W, Yang H L, et al. The BnGRF2 gene (GRF2-like gene from Brassica napus) enhances seed oil production through regulating cell number and plant photosynthesis[J]. Journal of experimental botany, 2012, 63(10): 3727-3740. [107] Elhiti M, Yang C, Chan A, et al. Altered seed oil and glucosinolate levels in transgenic plants overexpressing the Brassica napus SHOOTMERISTEMLESS gene[J]. Journal of experimental botany, 2012, 63(12): 4447-4461. [108] Yu L, Tan X, Jiang B, et al. A Peroxisomal Long-Chain Acyl-CoA Synthetase from Glycine max Involved in Lipid Degradation[J]. PloS one, 2014, 9(7): e100144. [109] M S V, R G, E M F. Cloning, characterization and structural model of a FatA-type thioesterase from sunflower seeds (Helianthus annuus L.)[J]. Planta, 2005, 221(6): 868-880. [110] Aznar-Moreno J A, Calerón M V, Martínez-Force E, et al. Sunflower (Helianthus annuus) long-chain acyl-coenzyme A synthetases expressed at high levels in developing seeds[J]. Physiologia plantarum, 2014, 150(3): 363-373. [111] Ruiz-López N, Garcés R, Harwood J, et al. Characterization and partial purification of acyl-CoA:glycerol 3-phosphate acyltransferase from sunflower (Helianthus annuus L.) developing seeds[J]. Plant Physiology Biochemistry, 2010, 48: 73-80. [112] Bana W, Garcia A S, Bana A, et al. Activities of acyl-CoA:diacylglycerol acyltransferase (DGAT) and phospholipid:diacylglycerol acyltransferase (PDAT) in microsomal preparations of developing sunflower and safflower seeds[J]. Planta, 2013, 237(6): 1627-1636. [113] Wei X, Liu K, Zhang Y, et al. Genetic discovery for oil production and quality in sesame[J]. Nature communications, 2015, 6: 8609. [114] Wang L, Sheng Y, Tong C, et al. Genome sequencing of the high oil crop sesame provides insight into oil biosynthesis[J]. Genome biology, 2014, 15(2): R39. [115] Cagliari A, Margis-Pinheiro M, Loss G, et al. Identification and expression analysis of castor bean (Ricinus communis) genes encoding enzymes from the triacylglycerol biosynthesis pathway[J]. Plant Science, 2010, 179(5): 499-509. [116] Wang L, Jiang X, Wang L, et al. A survey of transcriptome complexity using PacBio single-molecule real-time analysis combined with Illumina RNA sequencing for a better understanding of ricinoleic acid biosynthesis in Ricinus communis[J]. BMC genomics, 2019, 20. [117] Sánchez-García A, Moreno-Pérez A, Muro-Pastor A, et al. Acyl-ACP thioesterases from castor (Ricinus communis L.): an enzymatic system appropriate for high rates of oil synthesis and accumulation[J]. Phytochemistry, 2010, 71: 860-869. [118] Van D, Broun P, Turner S, et al. An oleate 12-hydroxylase from Ricinus communis L. is a fatty acyl desaturase homolog[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(15): 6743-6747. [119] Burgal J, Shockey J, Lu C, et al. Metabolic engineering of hydroxy fatty acid production in plants: RcDGAT2 drives dramatic increases in ricinoleate levels in seed oil[J]. Plant Biotechnology Journal, 2010, 6(8): 819-831. [120] Kim J B. Endoplasmic reticulum-located PDAT1-2 from castor bean enhances hydroxy fatty acid accumulation in transgenic plants[J]. Plant Cell Physiology, 2011, 52(6): 983-993. [121] Lin J, Arcinas A. Regiospecific analysis of diricinoleoylacylglycerols in castor (Ricinus communis L.) oil by electrospray ionization-mass spectrometry[J]. Journal of Agricultural and Food Chemistry, 2007, 55(6): 2209-2216. [122] Lin J T, Woodruff C L, Lagouche O J, et al. Biosynthesis of triacylglycerols containing ricinoleate in castor microsomes using 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine as the substrate of oleoyl-12-hydroxylase[J]. Lipids, 1998, 33(1): 59-69. [123] Arroyo-Caro J M, Chileh T, Alonso D L, et al. Molecular Characterization of a Lysophosphatidylcholine Acyltransferase Gene Belonging to the MBOAT Family in Ricinus communis L[J]. Lipids, 2013, 48(7): 663-674. [124] Akmar A, Cheah S C, Aminah S, et al. Characterization and regulation of the oil palm (Elaeis guineensis) stearoyl-ACP desaturase genes[J]. Journal of Oil Palm Research, 1999: 1-17. [125] Wan S, Willis L B, Rha C, et al. Isolation and Utilization of Acetyl-CoA Carboxylase from Oil Palm[J]. Journal of Oil Palm Research, 2008, Volume 2(July 2008): 97-107. [126] Ramli U S, Ravigadevi S, Omar A R, et al. The Isolation and Characterisation of Oil Palm (Elaeis Guineensis Jacq.) ß-Ketoacyl-acyl Carrier Protein (ACP) Synthase (KAS) II cDNA[J]. Journal of Oil Palm Research, 2012, 24: 1480-1491. [127] Rozana R, Chan P L, Chan K L, et al. In silico characterization and expression profiling of the diacylglycerol acyltransferase gene family (DGAT1, DGAT2, DGAT3 and WS/DGAT) from oil palm, Elaeis guineensis[J]. Plant ence, 2018, 275: 84-96. [128] Nadzirah A, Chan P L, Norazah A, et al. Characterization of Oil Palm Acyl-CoA-Binding Proteins and Correlation of Their Gene Expression with Oil Synthesis[J]. Plant Cell Physiology, 2019, (4): 4. [129] 陈锦清, 郎春秀, 胡张华, 等. 反义PEP基因调控油菜籽粒蛋白质/油脂含量比率的研究[J]. 农业生物技术学报, 1999, (04): 316-320. [130] Li X, Wang L, Ruan Y. Developmental and molecular physiological evidence for the role of phosphoenolpyruvate carboxylase in rapid cotton fibre elongation[J]. Journal of experimental botany, 2010, 61(1): 287-295. [131] Xu Z, Li J, Guo X, et al. Metabolic engineering of cottonseed oil biosynthesis pathway via RNA interference[J]. Scientific reports, 2016, 6: 33342. [132] Yui R, Iketani S, Mikami T, et al. Antisense inhibition of mitochondrial pyruvate dehydrogenase E1alpha subunit in anther tapetum causes male sterility[J]. The Plant Journal, 2003, 34(1): 57-66. [133] Williams M, Randall D. Pyruvate Dehydrogenase Complex from Chloroplasts of Pisum sativum L[J]. Plant physiology, 1979, 64(6): 1099-1103. [134] Chen B, Zhang G, Li P, et al. Multiple GmWRI1s are redundantly involved in seed filling and nodulation by regulating plastidic glycolysis, lipid biosynthesis and hormone signalling in soybean (Glycine max)[J]. Plant Biotechnology Journal, 2020, 18(1): 155-171. [135] Shen B, Allen W, Zheng P, et al. Expression of ZmLEC1 and ZmWRI1 increases seed oil production in maize[J]. Plant physiology, 2010, 153(3): 980-987. [136] Cui Y, Liu Z, Zhao Y, et al. Overexpression of Heteromeric GhACCase Subunits Enhanced Oil Accumulation in Upland Cotton[J]. Plant Molecular Biology Reporter, 2017, 35(2): 287-297. [137] Bourgis F, Kilaru A, Cao X, et al. Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(30): 12527-12532. [138] Cantisán S, Martínez-Force E, Garcés R. Enzymatic studies of high stearic acid sunflower seed mutants[J]. Plant Physiology and Biochemistry, 2000, 38(5): 377-382. [139] Pérez-Vich B, Fernández-Martínez J, Grondona M, et al. Stearoyl-ACP and oleoyl-PC desaturase genes cosegregate with quantitative trait loci underlying high stearic and high oleic acid mutant phenotypes in sunflower[J]. Theoretical Applied Genetics, 2002, 104: 338-349. [140] Heppard E, Kinney A, Stecca K, et al. Developmental and growth temperature regulation of two different microsomal omega-6 desaturase genes in soybeans[J]. Plant physiology, 1996, 110(1): 311-319. [141] Chen D, Chyan C, Jiang P, et al. The same oleosin isoforms are present in oil bodies of rice embryo and aleurone layer while caleosin exists only in those of the embryo[J]. Plant Physiology and Biochemistry, 2012, 60: 18-24. [142] Crowe A, Abenes M, Plant A, et al. The seed-specific transactivator, ABI3, induces oleosin gene expression[J]. Plant Science, 2000, 151(2): 171-181. [143] Lee K, Ratnayake C, Huang A. Genetic dissection of the co-expression of genes encoding the two isoforms of oleosins in the oil bodies of maize kernel[J]. The Plant Journal, 1995, 7(4): 603-611. [144] Vandana S, Bhatla S. Evidence for the probable oil body association of a thiol-protease, leading to oleosin degradation in sunflower seedling cotyledons[J]. Plant Physiology Biochemistry, 2006, 44: 714-723. [145] 赵桂兰, 陈锦清, 尹爱萍, 等. 获得转反义PEP基因超高油大豆新材料[J]. 分子植物育种, 2005, 3(006): 792-796. [146] 吴关庭, 郎春秀, 胡张华, 等. 应用反义PEP基因表达技术提高稻米脂肪含量[J]. 植物生理与分子生物学学报, 2006, (3): 339-344. [147] Marillia E, Micallef B, Micallef M, et al. Biochemical and physiological studies of Arabidopsis thaliana transgenic lines with repressed expression of the mitochondrial pyruvate dehydrogenase kinase[J]. Journal of experimental botany, 2003, 54(381): 259-270. [148] Baud S, Mendoza M, To A, et al. WRINKLED1 specifies the regulatory action of LEAFY COTYLEDON2 towards fatty acid metabolism during seed maturation in Arabidopsis[J]. Plant Journal, 2007, 50(5): 825-838. [149] Kanai M, Mano S, Kondo M, et al. Extension of oil biosynthesis during the mid-phase of seed development enhances oil content in Arabidopsis seeds[J]. Plant Biotechnology Journal, 2016, 14(5): 1241-1250. [150] Cernac A, Benning C. WRINKLED1 encodes an AP2/EREB domain protein involved in the control of storage compound biosynthesis in Arabidopsis[J]. The Plant Journal, 2004, 40(4): 575-585. [151] Li Q, Shao J, Tang S, et al. Wrinkled1 Accelerates Flowering and Regulates Lipid Homeostasis between Oil Accumulation and Membrane Lipid Anabolism in Brassica napus[J]. Frontiers in plant science, 2015, 6: 1015. [152] Yang Y, Munz J, Cass C, et al. Ectopic Expression of WRINKLED1 Affects Fatty Acid Homeostasis in Brachypodium distachyon Vegetative Tissues[J]. Plant physiology, 2015, 169(3): 1836-1847. [153] Angeles-Núñez J, Tiessen A. Mutation of the transcription factor LEAFY COTYLEDON 2 alters the chemical composition of Arabidopsis seeds, decreasing oil and protein content, while maintaining high levels of starch and sucrose in mature seeds[J]. Journal of plant physiology, 2011, 168(16): 1891-1900. [154] Tiedemann J, Rutten T, Mönke G, et al. Dissection of a complex seed phenotype: novel insights of FUSCA3 regulated developmental processes[J]. Developmental Biology, 2008, 317(1): 1-12. [155] Jenks M, Andersen L, Teusink R, et al. Leaf cuticular waxes of potted rose cultivars as affected by plant development, drought and paclobutrazol treatments[J]. Physiologia plantarum, 2001, 112(1): 62-70. [156] Fatihi A, Zbierzak A, Dörmann P. Alterations in seed development gene expression affect size and oil content of Arabidopsis seeds[J]. Plant physiology, 2013, 163(2): 973-985. [157] Kim H, Park J H, Kim D J, et al. Functional analysis of diacylglycerol acyltransferase1 genes from Camelina sativa and effects of CsDGAT1B overexpression on seed mass and storage oil content in C. sativa[J]. Plant Biotechnology Reports, 2016, 10(3): 141-153. [158] Singer S D, Zou J, Weselake R J. Abiotic factors influence plant storage lipid accumulation and composition[J]. Plant Science, 2016, 243: 1-9. [159] Byfield G E, Upchurch R G. Effect of Temperature on Delta-9 Stearoyl-ACP and Microsomal Omega-6 Desaturase Gene Expression and Fatty Acid Content in Developing Soybean Seeds[J]. Crop Science, 2007, 47(4): 1698. [160] Tang G Q, Novitzky W P, Griffin H C, et al. Oleate desaturase enzymes of soybean: evidence of regulation through differential stability and phosphorylation[J]. Plant Journal, 2010, 44(3): 433-446. [161] Lu C, Hills M. Arabidopsis mutants deficient in diacylglycerol acyltransferase display increased sensitivity to abscisic acid, sugars, and osmotic stress during germination and seedling development[J]. Plant physiology, 2002, 129(3): 1352-1358. [162] Yang Y, Yu X, Song L, et al. ABI4 activates DGAT1 expression in Arabidopsis seedlings during nitrogen deficiency[J]. Plant physiology, 2011, 156(2): 873-883. [163] Elahi N, Duncan R, Stasolla C. Modification of oil and glucosinolate content in canola seeds with altered expression of Brassica napus LEAFY COTYLEDON1[J]. Plant Physiology and Biochemistry, 2016, 100: 52-63.
|
[1] | LI Jun, FAN Shi-hang, LIU Jing-lin, LIU Jing, HUA Wei. Molecular regulatory mechanisms of explant regeneration [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(3): 376-. |
[2] | WANG Yan-jia, FAN Shi-hang§, LIU Jing, ZHENG Ming, HUA Wei. Cloning and activity of BnLEC1.A07 gene promoter in rapeseed (Brassica napus L.) lines with different oil content [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(3): 383-. |
[3] | HE Dan, YANG Tai-hua, LI Ting, WU Jin-feng, PENG Jia-shi, LIU Li-li, ZHANG Da-wei, YAN Ming-li, LI Zai-yun. Genome-wide identification and expression analysis of ZIP transporter gene family in Brassica napus [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(3): 392-. |
[4] | GUO Ju-ling, SHI Xiao-rui, XIN Qiang, HONG Deng-feng, YANG Guang-sheng. Breeding for thermo-sensitive pol cytoplasmic male sterile line and its restorer with high oleic acid through molecular marker-assisted selection in Brassica napus [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(3): 418-. |
[5] | ZHANG Kai, WEI Si-yu§, CHANG Wei, FAN Yong-hai, LU Kun. Construction of whole genome full-length cDNA FOX-hunting overexpression library in Brassica napus [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(3): 435-. |
[6] | PENG Men-lu, ZHAO Xiao-zhen, WANG Xiao-dong, CHEN Feng, ZHANG Wei, SUN Cheng-ming, ZHANG Chun, GUAN Rong-zhan, ZHANG Jie-fu. Phenotypic identification and genetic analysis of a chlorophyll deficient mutant yl1 in Brassica napus [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(3): 443-. |
[7] | ZHANG Xu, Safdar Luqman Bin, TANG Min-qiang, LIU Yue-ying, ZHANG Yuan-yuan, LIU Sheng-yi. Genetic dissection of plant architecture-related traits by GWAS with PCA in Brassica napus [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(3): 462-. |
[8] | WANG Juan, LI Chun-juan, SHI Da-chuan, LIU Yu, TANG Rong-hua, HE Liang-qiong, ZHAO Xiao-bo, YUAN Cui-ling, SUN Quan-xi, YAN Cai-xia, SHAN Shi-hua. Verifying high variation regions based on sect. Arachis chloroplast genome and revealing the interspecies genetic relationship [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(3): 495-. |
[9] | WANG Da-gang, CHEN Sheng-nan, YU Guo-yi, LI Jie-kun, HAN Qian-xiao, WU Qian, HU Guo-yu, HUANG Zhi-ping. Analysis on trends of main traits for summer soybean varieties released in Anhui from 1983 to 2019 [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(3): 510-. |
[10] | LI Rong-de, LI Ai-ai, NIU Qing-jie. Analysis on registration of sunflower varieties in China [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(3): 518-. |
[11] | CHI Hui, ZHANG Tian-bao, LIU Cai-yue, LI Liang, PEI Xin-wu, YUAN Qian-hua, LONG Yan. Establishment of a rapid and effective transgenic system for oil flax [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(3): 524-. |
[12] | ZHANG Yao, WU Bang-fu, LYU Xin, XIE Ya, CHEN Hong, WEI Fang. Research progress on specific lipid companions and analytical methods in oil crops [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(3): 530-. |
[13] | WAN Li-hao, QU Chen-ling, WANG Xiu-pin. Sphingolipid profile analysis method based on ultra high performance liquid chromatography-orbitrap mass spectrometry and its application in vegetable oil and oil crops#br# [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(3): 542-. |
[14] | DENG Lin-bin, FAN Shi-hang, SUN Xing-chao, HUA Wei, LIU Jing. Establishment of an in vitro embryonic growth system and its application in rapeseed oil synthesis and accumulation study [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(2): 203-. |
[15] | SUN Jian, YAN Ting-xian, YAN Xiao-wen, LIANG Jun-chao, RAO Yue-liang, ZHOU Hong-ying, LE Mei-wang. Seed production techniques of hybrid sesame Ⅰ: relationship between parental row ratio and seed yield [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(2): 219-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||