CHINESE JOURNAL OF OIL CROP SCIENCES ›› 2022, Vol. 44 ›› Issue (3): 548-554.doi: 10.19802/j.issn.1007-9084.2021101
Previous Articles Next Articles
Wei LIU(), Yu-bin WANG, Wei LI, Li-feng ZHANG, Cai-jie WANG, Ran XU, Hai-ying DAI, Yan-wei ZHANG(
)
Received:
2021-03-20
Online:
2022-06-25
Published:
2022-07-04
Contact:
Yan-wei ZHANG
E-mail:hnaulw@126.com;zywei-1987@163.com
CLC Number:
Wei LIU, Yu-bin WANG, Wei LI, Li-feng ZHANG, Cai-jie WANG, Ran XU, Hai-ying DAI, Yan-wei ZHANG. QTL mapping and candidate genes identification for flowering time of soybean[J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 548-554.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jouroilcrops.cn/EN/10.19802/j.issn.1007-9084.2021101
Table 2
Details of QTLs associated with flowering time in soybean
QTL | 环境 Environments | 染色体 Chromosome | 标记间距离 Interval /cM | LOD | PVE /% | Add | 已报道的QTL Reported QTL |
---|---|---|---|---|---|---|---|
qFT6-1 | 2013 | 6 | 73.65~73.65 | 10.92 | 8.25 | 1.41 | First flower26-2[ |
2014 | 6 | 73.65~73.65 | 13.55 | 7.13 | 1.24 | ||
qFT8 | 2013 | 8 | 0.00~0.69 | 3.83 | 1.75 | 0.65 | |
2014 | 8 | 0.00~0.69 | 7.37 | 2.58 | 0.75 | ||
qFT11-1 | 2013 | 11 | 66.96~67.44 | 8.75 | 7.17 | -1.34 | First flower8-4[ |
2014 | 11 | 66.96~67.44 | 12.95 | 6.74 | -1.22 | ||
qFT19 | 2013 | 19 | 35.14~36.50 | 6.33 | 4.40 | 1.03 | First flower15-2[ |
2014 | 19 | 35.14~36.50 | 9.69 | 4.69 | 1.00 | ||
qFT20-1 | 2013 | 20 | 113.99~114.33 | 4.96 | 4.29 | 1.04 | First flower16-3[ |
2014 | 20 | 113.99~114.33 | 10.64 | 6.85 | 1.23 | ||
qFT20-2 | 2013 | 20 | 114.33~114.66 | 5.18 | 4.39 | 1.05 | |
2014 | 20 | 114.33~114.66 | 10.65 | 6.79 | 1.23 | ||
qFT6-2 | 2013 | 6 | 68.71~73.65 | 11.01 | 8.04 | 1.39 | First flowe26-2[ |
qFT11-2 | 2013 | 11 | 65.87~66.96 | 8.84 | 7.39 | -1.36 | First flower8-4[ |
qFT11-3 | 2014 | 11 | 67.44~68.26 | 12.63 | 6.67 | -1.21 | First flower8-4[ |
qFT14 | 2014 | 14 | 48.62~48.75 | 5.58 | 4.38 | -0.98 | |
qFT16 | 2014 | 16 | 62.43~65.28 | 5.65 | 3.08 | -0.81 |
Table 3
Informationof QTLs identified in 2 years
QTL | 染色体 Chromosome | 起始位置 Start position /bp | 终止位置 End position / bp | 区间内基因数目 Gene numbers | CDS区突变基因数目 Number of genes had variations in CDS region |
---|---|---|---|---|---|
qFT6-1 | 6 | 16 858 448 | 16 880 743 | 2 | 2 |
qFT8 | 8 | 3 032 259 | 3 155 610 | 15 | 6 |
qFT11-1 | 11 | 26 442 440 | 26 214 317 | 16 | 6 |
qFT19 | 19 | 38 837 410 | 39 119 275 | 20 | 4 |
qFT20-1 | 20 | 38 965 134 | 39 374 426 | 40 | 23 |
qFT20-2 | 20 | 39 374 043 | 39 648 531 | 28 | 12 |
Table 4
Information of the candidate genes related to flowering time of soybean
位点 Location | 候选基因 Candidate gene | 基因注释 Gene annotation | 拟南芥同源基因 Best hit in Arabidopsis | 拟南芥中功能 Functions in Arabidopsis | 变异类型 Variation type | 变异信息Variation information | |
---|---|---|---|---|---|---|---|
滑皮豆 Huapidou | 齐黄26 Qihuang 26 | ||||||
qFT6-1 | Glyma.06g191800 | 含BHLH结构域 BHLH domain containing protein | PRE3 (AT1G74500) | 促进开花 Promote flowering | 移码突变 Frame shift | Chr06: 16869832bp: A/AGAGG 16869839bp: A/G | NA |
qFT8 | Glyma.08g039800 | 蛋白质结合 Protein binding | VRN5 (AT3G24440) | 促进开花 (短日) Promote flowering (SD) | 非同义突变 Non synonymous coding | Chr08: 3148078bp: T/C | NA |
qFT20-1 | Glyma.20g153600 | 磷酸转移酶 Phosphotransferases | PGM1 (AT5G51820) | 促进开花 (短日) Promote flowering(SD) | 非同义突变 Non synonymous coding | Chr20: 39256447bp: A/G 39259855bp: G/A | NA |
qFT20-2 | Glyma.20g154200 | 转录因子活性 Transcription factor activity | AGL42 (AT5G62165) | 促进开花 Promote flowering | 非同义突变 Non synonymous coding | Chr20: 39312919bp: T/C 39324082bp:G/A | NA |
1 |
Cober E R, Stewart D W, Voldeng H D. Photoperiod and temperature responses in early-maturing, near-isogenic soybean lines[J]. Crop Sci, 2001, 41(3): 721-727. DOI:10.2135/cropsci2001.413721x .
doi: 10.2135/cropsci2001.413721x |
2 | 王金陵, 武镛祥, 吴和礼, 等. 中国南北地区大豆光照生态类型的分析[J]. 农业学报. 1956, 7(2): 169-180. |
3 |
Lin X Y, Liu B H, Weller J L, et al. Molecular mechanisms for the photoperiodic regulation of flowering in soybean[J]. J Integr Plant Biol, 2021. DOI:10.1111/jipb.13021 .
doi: 10.1111/jipb.13021 |
4 |
Xia Z, Watanabe S, Yamada T, et al. Positional cloning and characterization reveal the molecular basis for soybean maturity locus E1 that regulates photoperiodic flowering[J]. PNAS, 2012, 109(32): E2155-E2164. DOI:10.1073/pnas.1117982109 .
doi: 10.1073/pnas.1117982109 |
5 |
Watanabe S, Xia Z, Hideshima R, et al. A map-based cloning strategy employing a residual heterozygous line reveals that the GIGANTEA gene is involved in soybean maturity and flowering[J]. Genetics, 2011, 188(2): 395-407. DOI:10.1534/genetics.110.125062 .
doi: 10.1534/genetics.110.125062 |
6 |
Watanabe S, Hideshima R, Xia Z, et al. Map-based cloning of the gene associated with the soybean maturity locus E3[J]. Genetics, 2009, 182(4): 1251-1262. DOI:10.1534/genetics.108.098772 .
doi: 10.1534/genetics.108.098772 |
7 |
Liu B, Kanazawa A, Matsumura H, et al. Genetic redundancy in soybean photoresponses associated with duplication of the phytochrome A gene[J]. Genetics, 2008, 180(2): 995-1007. DOI:10.1534/genetics.108.092742 .
doi: 10.1534/genetics.108.092742 |
8 |
Kong F, Liu B, Xia Z, et al. Two coordinately regulated homologs of FLOWERING LOCUS T are involved in the control of photoperiodic flowering in soybean[J]. Plant Physiol, 2010, 154(3): 1220-1231. DOI:10.1104/pp.110.160796 .
doi: 10.1104/pp.110.160796 |
9 |
Jiang B, Nan H, Gao Y, et al. Allelic combinations of soybean maturity loci E1, E2, E3 and E4 result in diversity of maturity and adaptation to different latitudes[J]. PLoS One, 2014, 9(8): e106042. DOI:10.1371/journal.pone.0106042 .
doi: 10.1371/journal.pone.0106042 |
10 |
Zhai H, Lü S, Wang Y, et al. Allelic variations at four major maturity E genes and transcriptional abundance of the E1 gene are associated with flowering time and maturity of soybean cultivars[J]. PLoS One, 2014, 9(5): e97636. DOI:10.1371/journal.pone.0097636 .
doi: 10.1371/journal.pone.0097636 |
11 |
Zhang Y, Li W, Lin Y, et al. Construction of a high-density genetic map and mapping of QTLs for soybean (Glycine max) agronomic and seed quality traits by specific length amplified fragment sequencing[J]. BMC Genomics, 2018, 19(1): 641. DOI:10.1186/s12864-018-5035-9 .
doi: 10.1186/s12864-018-5035-9 |
12 |
Jun T H, Freewalt K, Michel A P, et al. Identification of novel QTL for leaf traits in soybean[J]. Plant Breeding, 2014, 133(1): 61-66. DOI:10.1111/pbr.12107 .
doi: 10.1111/pbr.12107 |
13 |
Yamanaka N, Ninomiya S, Hoshi M, et al. An informative linkage map of soybean reveals QTLs for flowering time, leaflet morphology and regions of segregation distortion[J]. DNA Res, 2001, 8(2): 61-72. DOI:10.1093/dnares/8.2.61 .
doi: 10.1093/dnares/8.2.61 |
14 |
Komatsu K, Okuda S, Takahashi M, et al. Quantitative trait loci mapping of pubescence density and flowering time of insect-resistant soybean (Glycine max L. Merr.)[J]. Genet Mol Biol, 2007, 30(3): 635-639. DOI:10.1590/s1415-47572007000400022 .
doi: 10.1590/s1415-47572007000400022 |
15 |
Khan N A, Githiri S M, Benitez E R, et al. QTL analysis of cleistogamy in soybean[J]. Theor Appl Genet, 2008, 117(4): 479-487. DOI:10.1007/s00122-008-0792-5 .
doi: 10.1007/s00122-008-0792-5 |
16 |
Lee S, Lee S, Yang K Y, et al. Overexpression of PRE1 and its homologous genes activates gibberellin-dependent responses in Arabidopsis thaliana [J]. Plant Cell Physiol, 2006, 47(5): 591-600. DOI:10.1093/pcp/pcj026 .
doi: 10.1093/pcp/pcj026 |
17 |
Greb T, Mylne J S, Crevillen P, et al. The PHD finger protein VRN5 functions in the epigenetic silencing of Arabidopsis FLC[J]. Curr Biol, 2007, 17(1): 73-78. DOI:10.1016/j.cub.2006.11.052 .
doi: 10.1016/j.cub.2006.11.052 |
18 |
Pal S K, Liput M, Piques M, et al. Diurnal changes of polysome loading track sucrose content in the rosette of wild-type Arabidopsis and the starchless pgm mutant[J]. Plant Physiol, 2013, 162(3): 1246-1265. DOI:10.1104/pp.112.212258 .
doi: 10.1104/pp.112.212258 |
19 |
Yu T S, Lue W L, Wang S M, et al. Mutation of Arabidopsis plastid phosphoglucose isomerase affects leaf starch synthesis and floral initiation[J]. Plant Physiol, 2000, 123(1): 319-326. DOI:10.1104/pp.123.1.319 .
doi: 10.1104/pp.123.1.319 |
20 |
Dorca-Fornell C, Gregis V, Grandi V, et al. The Arabidopsis SOC1-like genes AGL42, AGL71 and AGL72 promote flowering in the shoot apical and axillary meristems[J]. Plant J, 2011, 67(6): 1006-1017. DOI:10.1111/j.1365-313x.2011.04653.x .
doi: 10.1111/j.1365-313x.2011.04653.x |
21 |
Wang H, Li Y, Pan J, et al. The bHLH transcription factors MYC2, MYC3, and MYC4 are required for jasmonate-mediated inhibition of flowering in Arabidopsis [J]. Mol Plant, 2017, 10(11): 1461-1464. DOI:10.1016/j.molp.2017.08.007 .
doi: 10.1016/j.molp.2017.08.007 |
22 |
Liu Y W, Li X, Li K W, et al. Multiple bHLH proteins form heterodimers to mediate CRY2-dependent regulation of flowering-time in Arabidopsis [J]. PLoS Genet, 2013, 9(10): e1003861. DOI:10.1371/journal.pgen.1003861 .
doi: 10.1371/journal.pgen.1003861 |
23 |
Sharma N, Xin R, Kim D H, et al. NO FLOWERING IN SHORT DAY (NFL) is a bHLH transcription factor that promotes flowering specifically under short-day conditions in Arabidopsis [J]. Development, 2016, 143(4): 682-690. DOI:10.1242/dev.128595 .
doi: 10.1242/dev.128595 |
[1] | Jing-hui WANG, Yang LIU, Qi-you ZHENG, Xiao-tang CHENG, Chao-hui WANG. Identification of soybean producing area in North China based on multi-element and fatty acid fingerprint characteristics [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 532-538. |
[2] | Yue-li YUAN, Yuan-yuan YI, Yong ZHAN, Li-miao CHEN, Song-li YUAN, Yi HUANG, Zhi-yuan XIAO, Chan-juan ZHANG, Xin-an ZHOU. Distinguishing and evaluating high nitrogen-use-efficient soybean germplasm at seedling stage [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 539-547. |
[3] | Jian-qiu LIANG, Xiao-bo YU, Jian-gang AN, Zhao-qiong ZENG, Hai-ying WU, Ming-rong ZHANG. Maturity group classification of soybean varieties (lines) in the national trials [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 555-561. |
[4] | Yu-jia TAO, Lei LI, Zong-liang REN, Cheng LU, Qing-tao GONG, Xing-hua XING, Hai-dong JIANG. Regulation of signaling of H2O2 homeostasis under mild drought on drought resistance of soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 602-609. |
[5] | Qing-nan HAO, Fang YANG, Ai-ai WANG, Ze-fu LONG, Zhong-lu YANG, Hai-feng CHEN, Zhi-hui SHAN, Jun-bo DENG, Xin-an ZHOU. Effects of nitrogen fertilizer and sodium nitratol on photosynthetic characteristics and yield quality in southern soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 610-620. |
[6] | Mei-ling LIU, Nai-jie FENG, Dian-feng ZHENG, Sheng-jie FENG, Shi-ya WANG, Hong-tao XIANG. Effects of potassium indole butyrate on root morphogenesis and physiological metabolism of soybean under different soil water conditions [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 621-631. |
[7] | Kai LU, Jun-shan QI, Kai QI, Li-guo MA, Yue-li ZHANG, Bo ZHANG, Guo-ping MA, Chang-song LI. Pathogen identification of Pythium root rot disease on soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 652-658. |
[8] | Lu-lu LIU, Jian-fei LI, Yue SHU, xiao-yang CHEN, Gui-xiang TANG. Current situation of soybean production and consumption in China and strategies to improve self-sufficiency rate [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(2): 242-248. |
[9] | Lu HAN, Ke-xin QU, Yong-fu FU, Qing-shan CHEN, Xiao-xia WU, Xiao-mei ZHANG. A study on the function of GmWUS2 gene regulating the number of soybean nodules [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(2): 289-297. |
[10] | Qiao WANG, Hong-wei JIANG, Jian-guo XIE, Wen-jing PAN, Hai-yang ZHENG, Li-long HOU, Xin XIONG, Xiao-xia WU. QTL mapping and candidate gene mining for pod thickness in soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(2): 298-306. |
[11] | Hong-chang JIA, De-zhi HAN, Hong-rui YAN, Lei ZHANG, Ji-li LIANG, Xiao-fei YAN, Hai-fang ZHU, Wen-cheng LU. Comparative study on identification methods of soybean maturity group [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(2): 307-315. |
[12] | Le GAO, Zhi-qiang LI, Kai LI, Hai-jian ZHI. Advances in transgenic resistance to soybean mosaic virus disease [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(2): 434-441. |
[13] | Ying-lu HU, Xin-yue TIAN, Lei CHEN, Ning DING, Xiao-feng LI, Yu GAO, Shu-sen SHI. Analysis of fertility and population trend of experimental population of Riptortus pedestris fed on soybean pods [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(2): 460-466. |
[14] | Yue LI, Hai-yan LI, Yuan-yuan ZHOU, Jing-sheng CHEN, Ji-dong YU. Effect of ethanol extract of industrial hemp stalks on physiological and biochemical metabolism of soybean cyst nematode [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(1): 177-182. |
[15] | Xiao-zhen ZHAO, Wei-guo ZHAO, Chun ZHANG, Kun-jiang YU, Men-lu PENG, Feng CHEN, Wei ZHANG, Cheng-ming SUN, Bao-jun LI, Hao WANG, Xiao-dong WANG, Jie-fu ZHANG. QTL mapping and candidate gene analysis of branch angle in Brassica napus L. [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(1): 25-34. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||