CHINESE JOURNAL OF OIL CROP SCIENCES ›› 2022, Vol. 44 ›› Issue (4): 798-809.doi: 10.19802/j.issn.1007-9084.2021175
Previous Articles Next Articles
Yue ZHANG(), Jia-qi WANG, Zi-jian YU, Qiang XU, Lan ZHANG(
), Yu-xin PAN(
)
Received:
2021-06-22
Online:
2022-08-25
Published:
2022-08-30
Contact:
Lan ZHANG,Yu-xin PAN
E-mail:1583998136@qq.com;zhanglan1374@sohu.com;panyu-xin@163.com;zhanglan1374@sohu.com
CLC Number:
Yue ZHANG, Jia-qi WANG, Zi-jian YU, Qiang XU, Lan ZHANG, Yu-xin PAN. Bioinformatics analysis of MIKC-type MADS-box gene family in legumes[J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 798-809.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jouroilcrops.cn/EN/10.19802/j.issn.1007-9084.2021175
Table 1
Physicochemical properties and subcellular localization of soybean MIKC-type MADS-boxproteins
亚类 Subgroup | 氨基酸数量/aa Number of amino acids | 分子量/kD Molecular weight | 等电点 pI | 不稳定系数 Instability index | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|
MIKC* | 325~354 | 36 688.47~40 409.85 | 5.65~6.84 | 44.43~67.16 | nucl |
PI | 181~208 | 20 907.02~24 394.79 | 7.82~8.87 | 45.28~54.38 | nucl |
AP3 | 227~243 | 26 185.89~28 023.26 | 9.17~9.32 | 27.88~47.32 | nucl |
BS | 245~246 | 28 916.87~29 081.13 | 6.52~6.68 | 56.90~78.50 | cyto |
AG/STK | 222~247 | 25 696.40~28 426.04 | 9.25~9.72 | 49.32~64.90 | nucl |
AGL12 | 203~204 | 22 990.75~23 297.09 | 8.93~9.10 | 40.37~41.04 | mito |
SEP1 | 243~255 | 27 685.27~29 210.10 | 6.46~8.94 | 37.17~52.09 | nucl |
AGL6 | 230~245 | 26 573.23~28 603.19 | 8.62~9.15 | 43.80~60.34 | nucl |
AP1 | 236~253 | 27 428.39~28 452.56 | 8.55~9.58 | 42.13~67.59 | nucl,chlo |
SOC1 | 126~237 | 24 106.42~27 197.87 | 8.58~9.55 | 50.98~68.53 | nucl |
AGL15 | 126~246 | 14 182.42~27 941.70 | 5.30~10.11 | 44.07~63.45 | nucl |
SVP | 204~248 | 23 430.83~28 679.29 | 5.58~9.65 | 42.38~67.23 | nucl |
AGL17 | 97~257 | 10 915.86~29 299.72 | 6.97~9.62 | 44.32~59.50 | nucl,cyto |
FLC | 198~243 | 22 764.24~27 685.27 | 6.46~8.77 | 36.78~40.09 | nucl,cyto |
Table 2
Physicochemical properties and subcellular localization of MedicagoMIKC-type MADS-box proteins
亚类 Subgroup | 氨基酸数量/aa Number of amino acids | 分子量/kD Molecular weight | 等电点 pI | 不稳定系数 Instability index | 亚细胞定位 Subcellular localization |
---|---|---|---|---|---|
MIKC* | 318~402 | 36 080.67~45 575.26 | 5.22~8.17 | 41.73~70.43 | nucl,chlo |
PI | 180~181 | 21 051.41~20 855.95 | 8.87~9.64 | 43.43~89.89 | nucl,cyto |
AP3 | 229~231 | 26 609.31~26 941.92 | 9.16~9.24 | 31.17~40.92 | nucl |
BS | 232 | 27 417.37 | 6.46 | 45.91 | mito |
AG/STK | 223~260 | 25 963.57~29 690.34 | 6.97~9.37 | 31.46~65.4 | nucl |
AGL12 | 202 | 22 890.77 | 8.78 | 43.75 | chlo |
SEP1 | 50~250 | 5 590.64~28 850.58 | 4.78~9.07 | 38.73~54.38 | nucl,chlo |
AGL6 | 189~251 | 22 127.54~29 480.69 | 8.88~9.33 | 40.99~47.86 | nucl,cyto |
AP1 | 62~256 | 7 054.27~29 223.40 | 8.24~9.86 | 41.85~54.42 | nucl |
SOC1 | 205~230 | 23 786.38~26 302.74 | 7.68~9.51 | 46.43~52.11 | nucl |
AGL15 | 249~256 | 28 195.10~29 267.42 | 6.98~8.8 | 55.05~65.24 | nucl |
SVP | 135~239 | 15 741.38~27 825.90 | 5.65~9.25 | 45.98~53.93 | nucl |
AGL17 | 61~278 | 6 878.05~31 769.53 | 8.85~10.65 | 43.00~49.26 | nucl,mito |
FLC | ----- | ----- | ----- | ----- | ----- |
Fig. 5
Collinearity analysis of MIKC-type MADS-box genes in soybean, Medicagoand grapeNote: lines of different colours represent different collinear gene pairs; pink lines show collinear gene pairs between soybean and Medicago, orange lines show collinear gene pairs between soybean and grape, brown lines show collinear gene pairs between Medicago and grape, blue lines show collinear gene pairs between soybean, red lines show collinear gene pairs between Medicago, the purple for grape
Fig. 6
Analysis of KS value of MIKC-type MADS-box genes in soybeanand MedicagoNote: Lines of different colours represent different KS intervals between different collinear gene pairs.The red shows 0<KS<0.164, the orange shows KS: 0.164-0.627, the blue shows 0.627<KS<1.310, the purple shows Ks>1.310 in Fig.6A; The red shows 0<KS<0.164, the orange shows 0.627<KS<1.310, the blue shows KS>1.310 in Fig.6B
Fig. 7
Expression of MIKC-type MADS-box gene family in soybeanat different developmental stagesNote: COT.EP:soybean embryo at cotyledon stage; EM. EP: embryo at early maturity stage; MM.EP: embryo at medium maturity stage; AA1. EP: embryo at late maturity stage; Dry: soybean dry seed stage; SDLG. COT: soybean seedling stage
1 |
胡丽芳, 金志强, 徐碧玉. MADS-box基因在果实发育、成熟过程中的作用[J]. 分子植物育种, 2005, 3(3): 415-420. DOI:10.3969/j.issn.1672-416X.2005.03.018 .
doi: 10.3969/j.issn.1672-416X.2005.03.018 |
2 |
郑玲, 谢爱玲, 韩建明. 高粱MADS-box家族基因的鉴定与分析[J]. 东北农业科学, 2019, 44(5): 26-29. DOI:10.16423/j.cnki.1003-8701.2019.05.006 .
doi: 10.16423/j.cnki.1003-8701.2019.05.006 |
3 |
苏亚丽, 刘梦佳, 李海峰. 水稻MADS-box基因研究进展[J]. 河南农业科学, 2016, 45(9): 1-7. DOI:10.15933/j.cnki.1004-3268.2016.09.001 .
doi: 10.15933/j.cnki.1004-3268.2016.09.001 |
4 |
董金金, 刘伟, 李萌, 等. 银杏MADS-box基因家族的表达及系统发育分析[J]. 植物生理学报, 2018, 54(6): 1055-1063. DOI:10.13592/j.cnki.ppj.2017.0574 .
doi: 10.13592/j.cnki.ppj.2017.0574 |
5 |
Schilling S, Kennedy A, Pan S, et al. Genome-wide analysis of MIKC-type MADS-box genes in wheat: pervasive duplications, functional conservation and putative neofunctionalization[J]. New Phytol, 2020, 225(1): 511-529. DOI:10.1111/nph.16122 .
doi: 10.1111/nph.16122 |
6 |
赵夏云, 鲜登宇, 宋明, 等. MIKC型MADS-box蛋白对开花调控作用研究进展[J]. 生物技术通报, 2014(7): 8-15. DOI:10.13560/j.cnki.biotech.bull.1985.2014.07.002 .
doi: 10.13560/j.cnki.biotech.bull.1985.2014.07.002 |
7 |
Becker A, Theissen G. The major clades of MADS-box genes and their role in the development and evolution of flowering plants[J]. Mol Phylogenet Evol, 2003, 29(3): 464-489. DOI:10.1016/s1055-7903(03)00207-0 .
doi: 10.1016/s1055-7903(03)00207-0 |
8 |
胡瑞波, 范成明, 李宏宇, 等. 大豆MIKC型MADS-box基因家族分析[J]. 分子植物育种, 2009, 7(3): 429-436. DOI:10.3969/mpb.007.000429 .
doi: 10.3969/mpb.007.000429 |
9 |
Smaczniak C, Immink R G, Angenent G C, et al. Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies[J]. Development, 2012, 139(17): 3081-3098. DOI:10.1242/dev.074674 .
doi: 10.1242/dev.074674 |
10 |
Parenicová L, de Folter S, Kieffer M, et al. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world[J]. Plant Cell, 2003, 15(7): 1538-1551. DOI:10.1105/tpc.011544 .
doi: 10.1105/tpc.011544 |
11 |
周娜, 汪露瑶, 张天真, 等. 陆地棉MIKCC基因家族的全基因组分析[J]. 棉花学报, 2017, 29(6): 495-503. DOI:10.11963/1002-7807.znhy.20170913 .
doi: 10.11963/1002-7807.znhy.20170913 |
12 |
Ning K, Han Y, Chen Z, et al. Genome-wide analysis of MADS-box family genes during flower development in lettuce[J]. Plant Cell Environ, 2019, 42(6): 1868-1881. DOI:10.1111/pce.13523 .
doi: 10.1111/pce.13523 |
13 | 高虎虎, 张云霄, 胡胜武, 等. 甘蓝型油菜MADS-box基因家族的鉴定与系统进化分析[J]. 植物学报, 2017, 52: 699-712. |
14 |
肖勇, 杨耀东, 夏薇, 等. 多倍体在植物进化中的意义[J]. 广东农业科学, 2013, 40(16): 127-130. DOI:10.16768/j.issn.1004-874x.2013.16.002 .
doi: 10.16768/j.issn.1004-874x.2013.16.002 |
15 |
Wang J, Sun P, Li Y, et al. Hierarchically aligning 10 legume genomes establishes a family-level genomics platform[J]. Plant Physiol, 2017, 174(1): 284-300. DOI:10.1104/pp.16.01981 .
doi: 10.1104/pp.16.01981 |
16 |
Potter S C, Luciani A, Eddy S R, et al. HMMER web server: 2018 update[J]. Nucleic Acids Res, 2018, 46(w1): W200-W204. DOI:10.1093/nar/gky448 .
doi: 10.1093/nar/gky448 |
17 |
Katoh K, Standley D M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability[J]. Mol Biol Evol, 2013, 30(4): 772-780. DOI:10.1093/molbev/mst010 .
doi: 10.1093/molbev/mst010 |
18 |
Katoh K, Rozewicki J, Yamada K D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization[J]. Brief Bioinform, 2019, 20(4): 1160-1166. DOI:10.1093/bib/bbx108 .
doi: 10.1093/bib/bbx108 |
19 |
Nguyen L T, Schmidt H A, von Haeseler A, et al. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies[J]. Mol Biol Evol, 2015, 32(1): 268-274. DOI:10.1093/molbev/msu300 .
doi: 10.1093/molbev/msu300 |
20 |
Kalyaanamoorthy S, Minh B Q, Wong T K F, et al. ModelFinder: fast model selection for accurate phylogenetic estimates[J]. Nat Methods, 2017, 14(6): 587-589. DOI:10.1038/nmeth.4285 .
doi: 10.1038/nmeth.4285 |
21 |
Camacho C, Coulouris G, Avagyan V, et al. BLAST+: architecture and applications[J]. BMC Bioinform, 2009, 10: 421. DOI:10.1186/1471-2105-10-421 .
doi: 10.1186/1471-2105-10-421 |
22 |
Chen K, Durand D, Farach-Colton M. NOTUNG: a program for dating gene duplications and optimizing gene family trees[J]. J Comput Biol, 2000, 7(3/4): 429-447. DOI:10.1089/106652700750050871 .
doi: 10.1089/106652700750050871 |
23 |
Schneider M, Tognolli M, Bairoch A. The Swiss-Prot protein knowledgebase and ExPASy: providing the plant community with high quality proteomic data and tools[J]. Plant Physiol Biochem, 2004, 42(12): 1013-1021. DOI:10.1016/j.plaphy.2004.10.009 .
doi: 10.1016/j.plaphy.2004.10.009 |
24 |
Horton P, Park K J, Obayashi T, et al. WoLF PSORT: protein localization predictor[J]. Nucleic Acids Res, 2007, 35(web server issue): W585-W587. DOI:10.1093/nar/gkm259 .
doi: 10.1093/nar/gkm259 |
25 |
郭安源, 朱其慧, 陈新, 等. GSDS: 基因结构显示系统[J]. 遗传, 2007, 29(8): 1023-1026. DOI:10.16288/j.yczz.2007.08.004 .
doi: 10.16288/j.yczz.2007.08.004 |
26 |
Bailey T L, Boden M, Buske F A, et al. MEME SUITE: tools for motif discovery and searching[J]. Nucleic Acids Res, 2009, 37(web server issue): W202-W208. DOI:10.1093/nar/gkp335 .
doi: 10.1093/nar/gkp335 |
27 |
Chen C, Chen H, Zhang Y, et al. TBtools: an integrative toolkit developed for interactive analyses of big biological data[J]. Mol Plant, 2020, 13(8): 1194-1202. DOI:10.1016/j.molp.2020.06.009 .
doi: 10.1016/j.molp.2020.06.009 |
28 |
Wang Y, Tang H, Debarry J D, et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity[J]. Nucleic Acids Res, 2012, 40(7): e49. DOI:10.1093/nar/gkr1293 .
doi: 10.1093/nar/gkr1293 |
29 |
Krzywinski M, Schein J, Birol I, et al. Circos: an information aesthetic for comparative genomics[J]. Genome Res, 2009, 19(9): 1639-1645. DOI:10.1101/gr.092759.109 .
doi: 10.1101/gr.092759.109 |
30 |
Lin J Y, Le B H, Chen M, et al. Similarity between soybean and Arabidopsis seed methylomes and loss of non-CG methylation does not affect seed development[J]. PNAS, 2017, 114(45): E9730-E9739. DOI:10.1073/pnas.1716758114 .
doi: 10.1073/pnas.1716758114 |
31 |
Szklarczyk D, Morris J H, Cook H, et al. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible[J]. Nucleic Acids Res, 2017, 45(D1): D362-D368. DOI:10.1093/nar/gkw937 .
doi: 10.1093/nar/gkw937 |
32 | 黄方. 大豆花发育相关基因的克隆与功能研究[D]. 南京: 南京农业大学, 2007. |
33 |
汪潇琳, 陈艳萍, 喻德跃. MADS-box基因GmAGL15在大豆种子发育过程中的表达[J]. 作物学报, 2008, 34(2): 330-332. DOI:10.3321/j.issn: 0496-3490.2008.02.024 .
doi: 10.3321/j.issn: 0496-3490.2008.02.024 |
34 | 李玉舒. 梅花成花相关基因SOC1、SVP和LFY的功能分析[D]. 北京: 北京林业大学, 2017. |
35 |
万薇, 余坤江, 叶波涛, 等. TFL1相关基因调控植物花序发育的分子机制[J]. 植物生理学报, 2020, 56(3): 367-372. DOI:10.13592/j.cnki.ppj.2019.0358 .
doi: 10.13592/j.cnki.ppj.2019.0358 |
36 |
罗碧珍, 罗永海. 开花植物CO/FT分子途径的生物学功能和分子进化[J]. 福建农林大学学报(自然科学版), 2021, 50(2): 155-163. DOI:10.13323/j.cnki.j.fafu(nat.sci.).2021.02.002 .
doi: 10.13323/j.cnki.j.fafu(nat.sci.).2021.02.002 |
37 |
张加强, 朱开元, 史小华. 芍药MADS-box基因家族的鉴定及适应性进化分析[J]. 分子植物育种, 2019, 17(21): 6959-6966. DOI:10.13271/j.mpb.017.006959 .
doi: 10.13271/j.mpb.017.006959 |
38 |
Qu Y, Bi C, He B, et al. Genome-wide identification and characterization of the MADS-box gene family in Salix suchowensis [J]. PeerJ, 2019, 7: e8019. DOI:10.7717/peerj.8019 .
doi: 10.7717/peerj.8019 |
39 |
Wei B, Zhang R Z, Guo J J, et al. Genome-wide analysis of the MADS-box gene family in Brachypodium distachyon [J]. PLoS One, 2014, 9(1): e84781. DOI:10.1371/journal.pone.0084781 .
doi: 10.1371/journal.pone.0084781 |
40 |
张頔, 高晓阳, 张轩, 等. 花发育相关基因分子进化与花发育调控网络拓扑中心性的相关性研究[J]. 安徽农业科学, 2021, 49(8): 1-4. DOI:10.3969/j.issn.0517-6611.2021.08.001 .
doi: 10.3969/j.issn.0517-6611.2021.08.001 |
[1] | Yao XU, Su-feng LENG, Yu-ming ZHANG, Jin-hua SONG, Ke ZHAO. Evolution analysis of main agronomic traits, yield, quality and resistance of soybean varieties released in Jiangsu Province from 1982 to 2021 [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 780-789. |
[2] | Sha-sha CAO, Nan WU, Li-ping WANG, Xiao-yu LIU, Wei-qi WANG, Gui-feng ZHANG, Fa-wei WANG, Xiao-wei LI. Cloning, bioinformatics analysis and function identification of two soybean ERD15 genes [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 790-797. |
[3] | Qiu-sen CHEN, Feng-qiong CHEN, Han-lin LIU, Pei-yu CHU, Hua-mei WANG, Chun-yuan REN, Qiang ZHAO, Liang CAO, Gao-bo YU, Yu-xian ZHANG. Effect of exogenous melatonin on degradation of chlorothalonil and carbendazim residues in vegetable soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 893-900. |
[4] | Jing-hui WANG, Yang LIU, Qi-you ZHENG, Xiao-tang CHENG, Chao-hui WANG. Identification of soybean producing area in North China based on multi-element and fatty acid fingerprint characteristics [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 532-538. |
[5] | Yue-li YUAN, Yuan-yuan YI, Yong ZHAN, Li-miao CHEN, Song-li YUAN, Yi HUANG, Zhi-yuan XIAO, Chan-juan ZHANG, Xin-an ZHOU. Distinguishing and evaluating high nitrogen-use-efficient soybean germplasm at seedling stage [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 539-547. |
[6] | Wei LIU, Yu-bin WANG, Wei LI, Li-feng ZHANG, Cai-jie WANG, Ran XU, Hai-ying DAI, Yan-wei ZHANG. QTL mapping and candidate genes identification for flowering time of soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 548-554. |
[7] | Jian-qiu LIANG, Xiao-bo YU, Jian-gang AN, Zhao-qiong ZENG, Hai-ying WU, Ming-rong ZHANG. Maturity group classification of soybean varieties (lines) in the national trials [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 555-561. |
[8] | Yu-jia TAO, Lei LI, Zong-liang REN, Cheng LU, Qing-tao GONG, Xing-hua XING, Hai-dong JIANG. Regulation of signaling of H2O2 homeostasis under mild drought on drought resistance of soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 602-609. |
[9] | Qing-nan HAO, Fang YANG, Ai-ai WANG, Ze-fu LONG, Zhong-lu YANG, Hai-feng CHEN, Zhi-hui SHAN, Jun-bo DENG, Xin-an ZHOU. Effects of nitrogen fertilizer and sodium nitratol on photosynthetic characteristics and yield quality in southern soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 610-620. |
[10] | Mei-ling LIU, Nai-jie FENG, Dian-feng ZHENG, Sheng-jie FENG, Shi-ya WANG, Hong-tao XIANG. Effects of potassium indole butyrate on root morphogenesis and physiological metabolism of soybean under different soil water conditions [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 621-631. |
[11] | Kai LU, Jun-shan QI, Kai QI, Li-guo MA, Yue-li ZHANG, Bo ZHANG, Guo-ping MA, Chang-song LI. Pathogen identification of Pythium root rot disease on soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 652-658. |
[12] | Lu-lu LIU, Jian-fei LI, Yue SHU, xiao-yang CHEN, Gui-xiang TANG. Current situation of soybean production and consumption in China and strategies to improve self-sufficiency rate [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(2): 242-248. |
[13] | Lu HAN, Ke-xin QU, Yong-fu FU, Qing-shan CHEN, Xiao-xia WU, Xiao-mei ZHANG. A study on the function of GmWUS2 gene regulating the number of soybean nodules [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(2): 289-297. |
[14] | Hong-chang JIA, De-zhi HAN, Hong-rui YAN, Lei ZHANG, Ji-li LIANG, Xiao-fei YAN, Hai-fang ZHU, Wen-cheng LU. Comparative study on identification methods of soybean maturity group [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(2): 307-315. |
[15] | Le GAO, Zhi-qiang LI, Kai LI, Hai-jian ZHI. Advances in transgenic resistance to soybean mosaic virus disease [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(2): 434-441. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||