CHINESE JOURNAL OF OIL CROP SCIENCES ›› 2022, Vol. 44 ›› Issue (5): 989-995.doi: 10.19802/j.issn.1007-9084.2021226
Previous Articles Next Articles
Chao MA(), Miao-xin GUO, Sheng-nan MA, Yue WANG, Yu-tian SUN, Da-wei XIN, Qing-shan CHEN(
), Jin-hui WANG(
)
Received:
2021-08-27
Online:
2022-10-25
Published:
2022-10-31
Contact:
Qing-shan CHEN,Jin-hui WANG
E-mail:mcneau@163.com;qshchen@126.com;jinhuiwang113@126.com
CLC Number:
Chao MA, Miao-xin GUO, Sheng-nan MA, Yue WANG, Yu-tian SUN, Da-wei XIN, Qing-shan CHEN, Jin-hui WANG. Construction of HH103ΩNopAAΩNopD and effect of mutation on nodulation ability of soybean rhizobium[J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 989-995.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jouroilcrops.cn/EN/10.19802/j.issn.1007-9084.2021226
Table 1
Analysis of nodule traits in 100 germplasm accessions
HH103 | HH103ΩNopAA | HH103ΩNopAAΩNopD | ||||
---|---|---|---|---|---|---|
根瘤数 NN | 根瘤干重 NDW /mg | 根瘤数 NN | 根瘤干重 NDW /mg | 根瘤数 NN | 根瘤干重 NDW /mg | |
平均值Average | 44.12±7.81 | 45.47±8.24 | 37.60±10.61 | 42.34±12.32 | 34.84±11.21 | 28.31±8.26 |
最大值 Maximum | 75.33±2.62 | 84.33±3.74 | 64.33±2.87 | 70.33±4.87 | 72.00±21.23 | 68.33±12.31 |
最小值 Minimum | 24.67±3.68 | 19.67±5.24 | 20.33±3.40 | 18.33±2.10 | 14.67±1.70 | 15..33±2.22 |
标准差 Standard deviation | 7.81 | 8.24 | 10.61 | 12.32 | 11.21 | 8.26 |
变异系数 Coefficient of variation | 17.70% | 18.12% | 28.22% | 29.10% | 32.18% | 29.18% |
Fig. 1
Indentification of HH103ΩNopAAΩNopDNote: A: 1, HH103 (NopAA- F(R)); 2, HH103 (NopD- F(R)); 3, HH103ΩNopAA (NopAA- F(R)); 4, HH103ΩNopAA (NopD- F(R)); 5, HH103ΩNopAAΩNopD (NopAA- F(R)); 6, HH103ΩNopAAΩNopD (NopD- F(R)). B: 1, HH103ΩNopAAΩNopD (Spec-F and NopD- R); 2, HH103ΩNopAA (Spec-F and NopD-R); 3, HH10 3(Spec-F and NopD -R). C: “+” for the presence of genistin,“-” for the absence of genistin. “*” for the difference was significant at P<0.05 level; “**” for the difference was significant at P<0.01 level
1 | 沈琼, 刘小和. 我国油料, 植物油的进口特征及品种间的替代性分析 [J]. 农业经济导刊, 2006, 10: 76-81. |
2 | 杨茜. 中美贸易冲突对中国进口大豆的冲击效应[D]. 南昌: 江西财经大学, 2021. |
3 |
Han M, Okamoto M, Beatty P H, et al. The genetics of nitrogen use efficiency in crop plants[J]. Annu Rev Genet, 2015, 49: 269-289. DOI:10.1146/annurev-genet-112414-055037 .
doi: 10.1146/annurev-genet-112414-055037 |
4 |
Holt-Giménez E, Shattuck A. The agrofuels transition[J]. Bull Sci Technol Soc, 2009, 29(3): 180-188. DOI:10.1177/0270467609333730 .
doi: 10.1177/0270467609333730 |
5 |
Deakin W J, Broughton W J. Symbiotic use of pathogenic strategies: rhizobial protein secretion systems[J]. Nat Rev Microbiol, 2009, 7(4): 312-320. DOI:10.1038/nrmicro2091 .
doi: 10.1038/nrmicro2091 |
6 |
Saad M M, Staehelin C, Broughton W J, et al. Protein-protein interactions within type III secretion system-dependent pili of Rhizobium sp. strain NGR234[J]. J Bacteriol, 2008, 190(2): 750-754. DOI:10.1128/jb.01116-07 .
doi: 10.1128/jb.01116-07 |
7 |
Deakin W J, Marie C, Saad M M, et al. NopA is associated with cell surface appendages produced by the type III secretion system of Rhizobium sp. strain NGR234[J]. Mol Plant Microbe Interactions, 2005, 18(5): 499-507. DOI:10.1094/mpmi-18-0499 .
doi: 10.1094/mpmi-18-0499 |
8 |
Jiménez-Guerrero I, Pérez-Montaño F, Medina C, et al. NopC is a Rhizobium-specific type 3 secretion system effector secreted by Sinorhizobium (Ensifer) fredii HH103[J]. PLoS One, 2015, 10(11): e0142866. DOI:10.1371/journal.pone.0142866 .
doi: 10.1371/journal.pone.0142866 |
9 |
Wang J H, Wang J Q, Ma C, et al. QTL mapping and data mining to identify genes associated with the Sinorhizobium fredii HH103 T3SS effector NopD in soybean[J]. Front Plant Sci, 2020, 11: 453. DOI:10.3389/fpls.2020.00453 .
doi: 10.3389/fpls.2020.00453 |
10 |
Bartsev A V, Boukli N M, Deakin W J, et al. Purification and phosphorylation of the effector protein NopL from Rhizobium sp. NGR234[J]. FEBS Lett, 2003, 554(3): 271-274. DOI:10.1016/s0014-5793(03)01145-1 .
doi: 10.1016/s0014-5793(03)01145-1 |
11 |
Xin D W, Liao S, Xie Z P, et al. Functional analysis of NopM, a novel E3 ubiquitin ligase (NEL) domain effector of Rhizobium sp. strain NGR234[J]. PLoS Pathog, 2012, 8(5): e1002707. DOI:10.1371/journal.ppat.1002707 .
doi: 10.1371/journal.ppat.1002707 |
12 |
Zhang B, Wang M, Sun Y, et al. Glycine max NNL1 restricts symbiotic compatibility with widely distributed bradyrhizobia via root hair infection[J]. Nat Plants, 2021, 7(1): 73-86. DOI:10.1038/s41477-020-00832-7 .
doi: 10.1038/s41477-020-00832-7 |
13 |
Kambara K, Ardissone S, Kobayashi H, et al. Rhizobia utilize pathogen-like effector proteins during symbiosis[J]. Mol Microbiol, 2009, 71(1): 92-106. DOI:10.1111/j.1365-2958.2008.06507.x .
doi: 10.1111/j.1365-2958.2008.06507.x |
14 |
Okazaki S, Kaneko T, Sato S, et al. Hijacking of leguminous nodulation signaling by the rhizobial type III secretion system[J]. PNAS, 2013, 110(42): 17131-17136. DOI:10.1073/pnas.1302360110 .
doi: 10.1073/pnas.1302360110 |
15 |
Sugawara M, Takahashi S, Umehara Y, et al. Variation in bradyrhizobial NopP effector determines symbiotic incompatibility with Rj2-soybeans via effector-triggered immunity[J]. Nat Commun, 2018, 9: 3139. DOI:10.1038/s41467-018-05663-x .
doi: 10.1038/s41467-018-05663-x |
16 |
Weidner S, Becker A, Bonilla I, et al. Genome sequence of the soybean symbiont Sinorhizobium fredii HH103[J]. J Bacteriol, 2012, 194(6): 1617-1618. DOI:10.1128/jb.06729-11 .
doi: 10.1128/jb.06729-11 |
17 |
Xiang Q W, Bai J, Cai J, et al. NopD of Bradyrhizobium sp. XS1150 possesses SUMO protease activity[J]. Front Microbiol, 2020, 11: 386. DOI:10.3389/fmicb.2020.00386 .
doi: 10.3389/fmicb.2020.00386 |
18 |
Ratu S T N, Teulet A, Miwa H, et al. Rhizobia use a pathogenic-like effector to hijack leguminous nodulation signalling[J]. Sci Rep, 2021, 11(1): 2034. DOI:10.1038/s41598-021-81598-6 .
doi: 10.1038/s41598-021-81598-6 |
19 |
Dorival J, Philys S, Giuntini E, et al. Structural and enzymatic characterisation of the Type III effector NopAA (=GunA) from Sinorhizobium fredii USDA257 reveals a xyloglucan hydrolase activity[J]. Sci Rep, 2020, 10(1): 9932. DOI:10.1038/s41598-020-67069-4 .
doi: 10.1038/s41598-020-67069-4 |
20 |
Shi Y, Zhang Z, Wen Y, et al. RNA sequencing-associated study identifies GmDRR1 as positively regulating the establishment of symbiosis in soybean[J]. Mol Plant Microbe Interact, 2020, 33(6): 798-807. DOI:10.1094/mpmi-01-20-0017-r .
doi: 10.1094/mpmi-01-20-0017-r |
21 | 刘函西, 吕浩, 郭广雨, 等. 大豆根瘤菌HH103 rhcN突变对结瘤能力的影响[J]. 中国农业科学, 2021, 54: 1104-1116. |
22 | 张艳娇, 李长育, 王锦辉, 等. 大豆共生结瘤相关性状QTL定位信息整合及候选基因分析[J]. 中国油料作物学报, 2017, 39(5): 580-588. |
23 |
于妍, 刘芳, 唐敬仙. 大豆生育期类型划分研究进展[J]. 北京农业, 2015(8): 27. DOI:10.3969/j.issn.1000-6966.2015.08.022 .
doi: 10.3969/j.issn.1000-6966.2015.08.022 |
24 |
Ma Z, Song T, Zhu L, et al. A Phytophthora sojae glycoside hydrolase 12 protein is a major virulence factor during soybean infection and is recognized as a PAMP[J]. Plant Cell, 2015, 27(7): 2057-2072. DOI:10.1105/tpc.15.00390 .
doi: 10.1105/tpc.15.00390 |
25 |
Ratu S T N, Hirata A, Kalaw C O, et al. Multiple domains in the rhizobial type III effector Bel2-5 determine symbiotic efficiency with soybean[J]. Front Plant Sci, 2021, 12: 689064. DOI:10.3389/fpls.2021.689064 .
doi: 10.3389/fpls.2021.689064 |
26 |
Faruque O M, Miwa H, Yasuda M, et al. Identification of Bradyrhizobium elkanii genes involved in incompatibility with soybean plants carrying the Rj4 allele[J]. Appl Environ Microbiol, 2015, 81(19): 6710-6717. DOI:10.1128/aem.01942-15 .
doi: 10.1128/aem.01942-15 |
[1] | Su-qi JIAO, Jun-ming ZHOU, Yu-qing SHANG, Jia-xin WANG, Ai-jing ZHANG, Hao-bo HE, Qiu-zhu ZHAO, Yue LI, Dan YAO. Cloning and genetic transformation of soybean fatty acid dehydrogenase GmFAD3C-1 gene [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 1006-1017. |
[2] | Chun-juan YAN, Shu-hong SONG, Chang-ling WANG, Xu-gang SUN, Yong-qiang CAO, Li-jun ZHANG, Li ZHANG, Xiao-yang HUO, Wen-bin WANG. Effect of water stress in different phases on photosynthetic characteristics of drought-avoidant soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 1048-1056. |
[3] | Xian-xu WANG, Hui-ming FAN, Ran OU, Lei WANG, Sui WANG, Yan JIANG, Shao-dong WANG. Methylene blue and β-carotene double fading method in soybean breeding of lipoxygenase free [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 1123-1129. |
[4] | Shi-hua XIANG, Hao YANG, Hong-yan YANG, Hua-wei YANG, Lin YU, Ya-bin HAN, Qing-yuan HE. Identification and genome-wide association analysis for tolerance to acid aluminum using Sichuan and Chongqing soybean germplasm [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 981-988. |
[5] | Yao XU, Su-feng LENG, Yu-ming ZHANG, Jin-hua SONG, Ke ZHAO. Evolution analysis of main agronomic traits, yield, quality and resistance of soybean varieties released in Jiangsu Province from 1982 to 2021 [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 780-789. |
[6] | Sha-sha CAO, Nan WU, Li-ping WANG, Xiao-yu LIU, Wei-qi WANG, Gui-feng ZHANG, Fa-wei WANG, Xiao-wei LI. Cloning, bioinformatics analysis and function identification of two soybean ERD15 genes [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 790-797. |
[7] | Yue ZHANG, Jia-qi WANG, Zi-jian YU, Qiang XU, Lan ZHANG, Yu-xin PAN. Bioinformatics analysis of MIKC-type MADS-box gene family in legumes [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 798-809. |
[8] | Qiu-sen CHEN, Feng-qiong CHEN, Han-lin LIU, Pei-yu CHU, Hua-mei WANG, Chun-yuan REN, Qiang ZHAO, Liang CAO, Gao-bo YU, Yu-xian ZHANG. Effect of exogenous melatonin on degradation of chlorothalonil and carbendazim residues in vegetable soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 893-900. |
[9] | Jing-hui WANG, Yang LIU, Qi-you ZHENG, Xiao-tang CHENG, Chao-hui WANG. Identification of soybean producing area in North China based on multi-element and fatty acid fingerprint characteristics [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 532-538. |
[10] | Yue-li YUAN, Yuan-yuan YI, Yong ZHAN, Li-miao CHEN, Song-li YUAN, Yi HUANG, Zhi-yuan XIAO, Chan-juan ZHANG, Xin-an ZHOU. Distinguishing and evaluating high nitrogen-use-efficient soybean germplasm at seedling stage [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 539-547. |
[11] | Wei LIU, Yu-bin WANG, Wei LI, Li-feng ZHANG, Cai-jie WANG, Ran XU, Hai-ying DAI, Yan-wei ZHANG. QTL mapping and candidate genes identification for flowering time of soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 548-554. |
[12] | Jian-qiu LIANG, Xiao-bo YU, Jian-gang AN, Zhao-qiong ZENG, Hai-ying WU, Ming-rong ZHANG. Maturity group classification of soybean varieties (lines) in the national trials [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 555-561. |
[13] | Yu-jia TAO, Lei LI, Zong-liang REN, Cheng LU, Qing-tao GONG, Xing-hua XING, Hai-dong JIANG. Regulation of signaling of H2O2 homeostasis under mild drought on drought resistance of soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 602-609. |
[14] | Qing-nan HAO, Fang YANG, Ai-ai WANG, Ze-fu LONG, Zhong-lu YANG, Hai-feng CHEN, Zhi-hui SHAN, Jun-bo DENG, Xin-an ZHOU. Effects of nitrogen fertilizer and sodium nitratol on photosynthetic characteristics and yield quality in southern soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 610-620. |
[15] | Mei-ling LIU, Nai-jie FENG, Dian-feng ZHENG, Sheng-jie FENG, Shi-ya WANG, Hong-tao XIANG. Effects of potassium indole butyrate on root morphogenesis and physiological metabolism of soybean under different soil water conditions [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 621-631. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||