CHINESE JOURNAL OF OIL CROP SCIENCES ›› 2022, Vol. 44 ›› Issue (5): 981-988.doi: 10.19802/j.issn.1007-9084.2021242
Previous Articles Next Articles
Shi-hua XIANG1(), Hao YANG3, Hong-yan YANG2, Hua-wei YANG1, Lin YU1, Ya-bin HAN1, Qing-yuan HE3(
)
Received:
2021-09-16
Online:
2022-10-25
Published:
2022-10-31
Contact:
Qing-yuan HE
E-mail:zgxiangshihua@163.com;heqingyuan1@163.com
CLC Number:
Shi-hua XIANG, Hao YANG, Hong-yan YANG, Hua-wei YANG, Lin YU, Ya-bin HAN, Qing-yuan HE. Identification and genome-wide association analysis for tolerance to acid aluminum using Sichuan and Chongqing soybean germplasm[J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 981-988.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jouroilcrops.cn/EN/10.19802/j.issn.1007-9084.2021242
Table 1
201 Sichuan and Chongqing soybean varieties and sources
类型 Type | 品种名称(来源地) Name and region |
---|---|
育成品种 Breeding lines | 贡秋豆4号(自贡)、贡秋豆5号(自贡)、贡秋豆8号(自贡)、贡夏豆9号(自贡)、贡夏豆10号(自贡)、贡选1号(自贡)、南豆5号(南充)、南豆8号(南充)、南豆11(南充)、南豆12(南充)、南豆20(南充)、南豆25(南充)、南春豆31(南充)、贡豆6号(自贡)、贡豆7号(自贡)、贡豆10(自贡)、贡豆11(自贡)、贡豆12(自贡)、贡豆13(自贡)、贡豆14(自贡)、贡豆15(自贡) |
地方品种 Local varieties | 荣县棕毛豆(荣县)、西昌大豆(西昌)、荞窝黄豆(普格)、平武高脚黄(平武)、梁平早(梁平)、平坝皂角五月黄(什邡)、黄豆(中江)、白毛子②(都江堰)、二黄豆(郫县)、小黄豆(郫县)、二早黄(大邑)、黄壳子(邛崃)、六月爆(名山)、草坝黄壳豆(雅安)、仲思海白水豆(汉源)、双溪11-7241(汉源)、前进黄壳子(汉源)、宣东大黄豆(汉源)、大豆子(安岳)、金黄豆(隆昌)、大黄豆(丰都)、水豆子(眉山)、六十早(丹棱)、黄壳子①(青神)、六月爆①(乐山)、淡黄毛豆(合江)、豆芽豆(宜宾)、小白毛(泸定)、果元大白豆(会理)、绿皮豆(巫山)、绿蓝早(合江)、黑豆(渠县)、黑豆(峨边)、棕豆(温江)、紫皮豆(南川)、花脸豆①(隆昌)、绿皮豆(眉山)、落水白-1(忠县)、白水豆(垫江)、遍山白(黔江)、黄豆(丹巴)、金黄豆(江津)、圆黄豆(潼南)、大白毛豆(潼南)、二季早(珙县)、早豆(乐山)、百荚六月黄(仁寿)、转转豆(沐川)、小毛豆(峨眉)、小粒春豆(武胜)、六月黄(崇州)、大八月黄(绵竹)、小金黄(遂宁)、绿蓝子(雅安)、六月爆(宝兴)、早豆(喜德)、抱脚黄(冕宁)、青皮豆(重庆万州)、高产黄豆(酉阳)、五月黄(达县)、春黄豆-3(大竹)、黄豆(合川)、绿蓝子大黄豆(潼南)、青香豆(叙永)、绿蓝豆(叙永)、团结透绿黄豆(眉山)、绿皮豆(彭山)、绿皮豆(绵竹)、绿蓝子(中江)、早鸡母肉豆(名山)、绿皮豆-2(荥经)、金黑粒(安岳)、黑黄豆(遂宁)、黑豆(普格)、红皮黄豆(重庆万州)、早豆(重庆巴南)、红皮豆(平武)、马庄褐豆(金川)、黄豆(重庆万州)、猴巴掌豆(开县)、城南早豆-2(梁平)、二番早(酉阳)、大早黄(武隆)、七月黄(达县)、苌子豆(通江)、鸡母豆(通江)、阴山豆(通江)、黄豆(威远)、五爪豆(富顺)、芭蕉坟(珙县)、桩桩豆(筠连)、黄壳豆(洪雅)、大早黄(青神)、红毛豆-2(眉山)、六月黄(南充)、大粒冬豆(南充)、六月黄(苍溪)、大黑眉毛(北川)、大豆(广安)、黄豆(新都)、六月黄(大邑)、水白豆(德阳)、十月黄(盐亭)、马鞭梢(北川)、早黄豆(芦山)、灰儿豆-1(芦山)、一刀叶(名山)、高脚青(名山)、白毛子(石棉)、六月早(石棉)、永兴黄豆(天全)、白花豆(天全)、细毛子(宝兴)、白毛子(宝兴)、大颗豆(宝兴)、白皮豆(丹巴)、黄豆-1(九龙)、黄皮豆(九龙)、七十早(金川)、大白豆(茂汶)、三河大白豆(昭觉)、大奶白色(昭觉)、波波豆(甘洛)、裸曲(甘洛)、马抓豆-1(雷波)、古中豆(雷波)、新进白豆(美姑)、抱鸡黄-2(金阳)、大白豆(布拖)、大白豆-1(普格)、大白黄(盐源)、洛悉(喜德)、大黄壳(越西)、六月黄(越西)、大白黄毛(西昌)、永郎小白豆(德昌)、白豆-2(德昌)、大黄壳(盐源)、黄壳豆(盐源)、平川黄豆-3(盐源)、小白毛豆(攀枝花)、黑脐黄豆-2(自贡)、青皮豆(黔江)、早黄豆-2(泸州)、绿蓝子-1(泸州)、绿蓝豆(筠连)、绿皮豆-2(绵阳)、绿蓝子-2(青川)、绿豆子(平武)、绿黄豆(梓潼)、鸡肉豆-2(雅安)、绿香豆(汉源)、穿心豆(天全)、绿蓝子(西昌)、黑药王(筠连)、扬尘豆-2(荥经)、猪肝豆(荣县)、棕色豆(沐川)、洛史-1(雷波)、皂角豆(西昌)、扁子酱色豆(攀枝花)、杂色黄色-2(九龙)、花大豆(富顺)、花腰子(峨眉)、8107-6-3(成都)、红毛豆(金堂)、贡豆89-2(自贡)、小白水豆(叙永)、白毛六月黄(乐至)、龙会早(安岳)、早黄豆(梁平)、青相豆(叙永)、圆黄豆-2(广元)、田坎豆-1(仪陇)、田坎豆-1(阆中)、黄豆(绵竹)、92-526(成都)、六月黄(黔江)、六月爆-1(酉阳)、黄豆(彭山) |
Table 3
SNPs associated with tolerant to acid aluminum
方法 Method | 单倍型块 Haplotype block | SNP标记 SNP marker | 染色体 Chr. | SNP 位置 SNP position | P值 P value | 贡献率 R2 /% |
---|---|---|---|---|---|---|
GLM | / | Gm02_39019164 | 2 | 39019164 | 6.32E-05 | 7.84 |
BLK_02_39699877_39711375 | Gm02_39699877 | 2 | 39699877 | 2.95E-05 | 10.42 | |
BLK_02_45888424_45954698 | Gm02_45896774 | 2 | 45896774 | 2.17E-05 | 10.91 | |
BLK_11_4136516_4144145 | Gm11_4136516 | 11 | 4136516 | 5.91E-06 | 11.98 | |
BLK_20_42390243_42406087 | Gm20_42390243 | 20 | 42390243 | 5.14E-05 | 9.60 | |
Gm20_42397225 | 20 | 42397225 | 1.24E-05 | 9.28 | ||
Gm20_42401328 | 20 | 42401328 | 5.14E-05 | 9.60 | ||
Gm20_42406087 | 20 | 42406087 | 5.14E-05 | 9.60 | ||
MLM | BLK_02_39699877_39711375 | Gm02_39699877 | 2 | 39699877 | 7.04E-05 | 10.42 |
BLK_02_45888424_45954698 | Gm02_45896774 | 2 | 45896774 | 5.11E-05 | 10.91 | |
BLK_11_4136516_4144145 | Gm11_4136516 | 11 | 4136516 | 1.90E-05 | 11.98 | |
BLK_20_42390243_42406087 | Gm20_42397225 | 20 | 42397225 | 2.90E-05 | 9.28 |
Table 4
Candidate genes and annotations for tolerant to acid aluminum
单倍型块 Haplotype block | 候选基因名称 Candidate gene name | 功能注释 Function annotation |
---|---|---|
BLK_02_39699877_39711375 | Glyma.02g211800 | F-BOX/富含亮氨酸的重复蛋白 F-BOX/leucine rich repeat protein |
BLK_02_45888424_45954698 | Glyma.02g276000 | 细胞分裂蛋白激酶 Cell division protein kinase |
Glyma.02g276100 | / | |
Glyma.02g276200 | 五肽重复序列(PPR)超家族蛋白 Pentatricopeptide repeat (PPR) superfamily protein | |
Glyma.02g276300 | DnaJ/Hsp40 富含半胱氨酸结构域超家族蛋白 DnaJ/Hsp40 cysteine-rich domain superfamily protein | |
Glyma.02g276400 | 脲酶辅助蛋白F Urease accessory protein F | |
BLK_11_4136516_4144145 | / | / |
BLK_20_42390243_42406087 | Glyma.20g185500 | 碱性螺旋-环-螺旋(bHLH) DNA结合超家族蛋白 Basic helix-loop-helix (bHLH) DNA-binding superfamily protein |
1 | 沈仁芳, 赵学强. 酸性土壤可持续利用[J]. 农学学报, 2019, 9(3): 16-20. |
2 |
金婷婷, 刘鹏, 黄朝表, 等. 铝胁迫下大豆根系分泌物对根际土壤的影响[J]. 中国油料作物学报, 2007, 29(1): 42-48. DOI:10.3321/j.issn: 1007-9084.2007.01.009 .
doi: 10.3321/j.issn: 1007-9084.2007.01.009 |
3 |
夏建国, 邓良基, 张丽萍, 等. 四川土壤系统分类初步研究[J]. 四川农业大学学报, 2002, 20(2): 117-122. DOI:10.3969/j.issn.1000-2650.2002.02.013 .
doi: 10.3969/j.issn.1000-2650.2002.02.013 |
4 |
陈奇, 陈丽梅, 武孔焕, 等. 植物铝胁迫响应基因的研究进展[J]. 植物遗传资源学报, 2012, 13(5): 858-864. DOI:10.3969/j.issn.1672-1810.2012.05.025 .
doi: 10.3969/j.issn.1672-1810.2012.05.025 |
5 | 年海, 黄鹤, 严小龙, 等. 大豆对酸铝土壤的适应性研究. Ⅰ大豆耐酸铝毒性材料的鉴定研究[J]. 大豆科学, 1999, 18: 191-197. |
6 |
Hanson W D, Kamprath E J. Selection for aluminum tolerance in soybeans based on seedling-root growth 1[J]. Agronj, 1979, 71(4): 581-586. DOI:10.2134/agronj1979.00021962007100040015x .
doi: 10.2134/agronj1979.00021962007100040015x |
7 |
Korir P C, Qi B, Wang Y F, et al. A study on relative importance of additive, epistasis and unmapped QTL for Aluminium tolerance at seedling stage in soybean[J]. Plant Breeding, 2011, 130(5): 551-562. DOI:10.1111/j.1439-0523.2011.01862.x .
doi: 10.1111/j.1439-0523.2011.01862.x |
8 |
Bianchi-Hall C M, Carter T E, Bailey M A, et al. Aluminum tolerance associated with quantitative trait loci derived from soybean PI 416937 in hydroponics[J]. Crop Sci, 2000, 40(2): 538-545. DOI:10.2135/cropsci2000.402538x .
doi: 10.2135/cropsci2000.402538x |
9 |
Silva I R, Smyth T J, Raper C D, et al. Differential aluminum tolerance in soybean: an evaluation of the role of organic acids[J]. Physiol Plant, 2001, 112(2): 200-210. DOI:10.1034/j.1399-3054.2001.1120208.x .
doi: 10.1034/j.1399-3054.2001.1120208.x |
10 |
Duressa D, Soliman K, Chen D Q. Identification of aluminum responsive genes in Al-tolerant soybean line PI 416937[J]. Int J Plant Genom, 2010, 2010: 1-13. DOI:10.1155/2010/164862 .
doi: 10.1155/2010/164862 |
11 |
Qi B, Korir P, Zhao T J, et al. Mapping quantitative trait loci associated with aluminum toxin tolerance in NJRIKY recombinant inbred line population of soybean (Glycine max)[J]. J Integr Plant Biol, 2008, 50(9): 1089-1095. DOI:10.1111/j.1744-7909.2008.00682.x .
doi: 10.1111/j.1744-7909.2008.00682.x |
12 |
丛亚辉, 王婷婷, 柳聚阁, 等. 大豆耐铝毒候选基因 GmSTOP1的克隆与表达分析[J]. 作物学报, 2015, 41(12): 1802-1809. DOI:10.3724/SP.J.1006.2015.01802 .
doi: 10.3724/SP.J.1006.2015.01802 |
13 | 王欣欣. 大豆种质资源耐酸铝鉴定及QTL精细定位[D]. 广州: 华南农业大学, 2018. |
14 | 年海, 卢永根. 大豆耐铝种质筛选概况[J]. 华南理工大学学报(自然科学版), 1996, 24: 138-143. |
15 |
何庆元, 向仕华, 杨华伟, 等. 川渝地区地方和育成大豆品种SSR标记多样性分析[J]. 中国油料作物学报, 2018, 40(3): 326-334. DOI:10.7505/j.issn.1007-9084.2018.03.003 .
doi: 10.7505/j.issn.1007-9084.2018.03.003 |
16 |
应小芳, 刘鹏, 徐根娣, 等. 大豆耐铝毒基因型筛选及筛选指标的研究[J]. 中国油料作物学报, 2005, 27(1): 46-51. DOI:10.3321/j.issn: 1007-9084.2005.01.011 .
doi: 10.3321/j.issn: 1007-9084.2005.01.011 |
17 | Doyle J J, Doyle J L. Isolation of plant DNA from fresh tissue [J]. Focus, 1990,12: 13–15. |
18 | Illumina. Evalution of infinium genotyping assay controls training guide [M]. San Diego, CA 2012, 92122 USA. |
19 |
Shin J H, Blay S, Graham J, et al. LDheatmap: an R function for graphical display of pairwise linkage disequilibria between single nucleotide polymorphisms[J]. J Stat Soft, 2006, 16(Code Snippet 3): 1-9. DOI:10.18637/jss.v016.c03 .
doi: 10.18637/jss.v016.c03 |
20 | 盖钧镒. 试验统计方法: 《田间实验和统计方法》重编版[M]. 北京: 中国农业出版社, 2000. |
21 |
Schmutz J, Cannon S B, Schlueter J, et al. Genome sequence of the palaeopolyploid soybean[J]. Nature, 2010, 463(7278): 178-183. DOI:10.1038/nature08670 .
doi: 10.1038/nature08670 |
22 |
Song Q, Hyten D L, Jia G, et al. Development and evaluation of SoySNP50K, a high-density genotyping array for soybean[J]. PLoS One, 2013, 8(1): e54985. DOI:10.1371/journal.pone.0054985 .
doi: 10.1371/journal.pone.0054985 |
23 |
Korir P C, Zhang J, Wu K, et al. Association mapping combined with linkage analysis for aluminum tolerance among soybean cultivars released in Yellow and Changjiang River Valleys in China[J]. Theor Appl Genet, 2013, 126(6): 1659-1675. DOI:10.1007/s00122-013-2082-0 .
doi: 10.1007/s00122-013-2082-0 |
24 |
Bianchi-Hall C M, Carter T E, Bailey M A, et al. Aluminum tolerance associated with quantitative trait loci derived from soybean PI 416937 in hydroponics[J]. Crop Sci, 2000, 40(2): 538-545. DOI:10.2135/cropsci2000.402538x .
doi: 10.2135/cropsci2000.402538x |
25 |
马媛媛, 甘睿, 王宁宁. 植物富含亮氨酸重复序列型类受体蛋白激酶的生物学功能[J]. 植物生理与分子生物学学报, 2005, 31(4): 331-339. DOI:10.3321/j.issn: 1671-3877.2005.04.001 .
doi: 10.3321/j.issn: 1671-3877.2005.04.001 |
26 |
Zhao C, Zayed O, Yu Z, et al. Leucine-rich repeat extensin proteins regulate plant salt tolerance in Arabidopsis [J]. PNAS, 2018, 115(51): 13123-13128. DOI:10.1073/pnas.1816991115 .
doi: 10.1073/pnas.1816991115 |
27 | 王宁宁, 王勇, 王淑芳, 等. 细胞分裂素对大豆叶片衰老过程中蛋白激酶基因表达的影响[J]. 南开大学学报(自然科学版), 1998, 31: 99-101. |
28 |
Dong Y, Wang C, Han X, et al. A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis [J]. Biochem Biophys Res Commun, 2014, 450(1): 453-458. DOI:10.1016/j.bbrc.2014.05.139 .
doi: 10.1016/j.bbrc.2014.05.139 |
29 |
Zhao Q, Xiang X, Liu D, et al. Tobacco transcription factor NtbHLH123 confers tolerance to cold stress by regulating the NtCBF pathway and reactive oxygen species homeostasis[J]. Front Plant Sci, 2018, 9: 381. DOI:10.3389/fpls.2018.00381 .
doi: 10.3389/fpls.2018.00381 |
[1] | Su-qi JIAO, Jun-ming ZHOU, Yu-qing SHANG, Jia-xin WANG, Ai-jing ZHANG, Hao-bo HE, Qiu-zhu ZHAO, Yue LI, Dan YAO. Cloning and genetic transformation of soybean fatty acid dehydrogenase GmFAD3C-1 gene [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 1006-1017. |
[2] | Chun-juan YAN, Shu-hong SONG, Chang-ling WANG, Xu-gang SUN, Yong-qiang CAO, Li-jun ZHANG, Li ZHANG, Xiao-yang HUO, Wen-bin WANG. Effect of water stress in different phases on photosynthetic characteristics of drought-avoidant soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 1048-1056. |
[3] | Xian-xu WANG, Hui-ming FAN, Ran OU, Lei WANG, Sui WANG, Yan JIANG, Shao-dong WANG. Methylene blue and β-carotene double fading method in soybean breeding of lipoxygenase free [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 1123-1129. |
[4] | Yao XU, Su-feng LENG, Yu-ming ZHANG, Jin-hua SONG, Ke ZHAO. Evolution analysis of main agronomic traits, yield, quality and resistance of soybean varieties released in Jiangsu Province from 1982 to 2021 [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 780-789. |
[5] | Sha-sha CAO, Nan WU, Li-ping WANG, Xiao-yu LIU, Wei-qi WANG, Gui-feng ZHANG, Fa-wei WANG, Xiao-wei LI. Cloning, bioinformatics analysis and function identification of two soybean ERD15 genes [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 790-797. |
[6] | Yue ZHANG, Jia-qi WANG, Zi-jian YU, Qiang XU, Lan ZHANG, Yu-xin PAN. Bioinformatics analysis of MIKC-type MADS-box gene family in legumes [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 798-809. |
[7] | Bei WU, Nian LIU, Li HUANG, Huai-yong LUO, Xiao-jing ZHOU, Wei-gang CHEN, Jian-bin GUO, Dong-xin HUAI, You-lin XIA, Yong LEI, Bo-shou LIAO, Hui-fang JIANG. Identification of markers stably associated with different fatty acid content in peanut through association analysis [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 818-825. |
[8] | Qiu-sen CHEN, Feng-qiong CHEN, Han-lin LIU, Pei-yu CHU, Hua-mei WANG, Chun-yuan REN, Qiang ZHAO, Liang CAO, Gao-bo YU, Yu-xian ZHANG. Effect of exogenous melatonin on degradation of chlorothalonil and carbendazim residues in vegetable soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 893-900. |
[9] | Hui-min SHI, Fei-yan SU, Jian-hua HOU. Advances in genome-wide association analysis of quality related traits in oil crops [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 483-490. |
[10] | Jing-hui WANG, Yang LIU, Qi-you ZHENG, Xiao-tang CHENG, Chao-hui WANG. Identification of soybean producing area in North China based on multi-element and fatty acid fingerprint characteristics [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 532-538. |
[11] | Yue-li YUAN, Yuan-yuan YI, Yong ZHAN, Li-miao CHEN, Song-li YUAN, Yi HUANG, Zhi-yuan XIAO, Chan-juan ZHANG, Xin-an ZHOU. Distinguishing and evaluating high nitrogen-use-efficient soybean germplasm at seedling stage [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 539-547. |
[12] | Wei LIU, Yu-bin WANG, Wei LI, Li-feng ZHANG, Cai-jie WANG, Ran XU, Hai-ying DAI, Yan-wei ZHANG. QTL mapping and candidate genes identification for flowering time of soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 548-554. |
[13] | Jian-qiu LIANG, Xiao-bo YU, Jian-gang AN, Zhao-qiong ZENG, Hai-ying WU, Ming-rong ZHANG. Maturity group classification of soybean varieties (lines) in the national trials [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 555-561. |
[14] | Yu-jia TAO, Lei LI, Zong-liang REN, Cheng LU, Qing-tao GONG, Xing-hua XING, Hai-dong JIANG. Regulation of signaling of H2O2 homeostasis under mild drought on drought resistance of soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 602-609. |
[15] | Qing-nan HAO, Fang YANG, Ai-ai WANG, Ze-fu LONG, Zhong-lu YANG, Hai-feng CHEN, Zhi-hui SHAN, Jun-bo DENG, Xin-an ZHOU. Effects of nitrogen fertilizer and sodium nitratol on photosynthetic characteristics and yield quality in southern soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 610-620. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||