CHINESE JOURNAL OF OIL CROP SCIENCES ›› 2022, Vol. 44 ›› Issue (6): 1199-1209.doi: 10.19802/j.issn.1007-9084.2021259
Previous Articles Next Articles
Shuai DU1(), Li-li WAN2, Zhuan-rong WANG2, Yi XU1, Deng-feng HONG1, Guang-sheng YANG1(
)
Received:
2021-10-14
Online:
2022-12-25
Published:
2022-11-24
Contact:
Guang-sheng YANG
E-mail:1308976927@qq.com;gsyang@mail.hzau.edu.cn
CLC Number:
Shuai DU, Li-li WAN, Zhuan-rong WANG, Yi XU, Deng-feng HONG, Guang-sheng YANG. Genetic transformation and resistance evaluation of glyphosate resistance gene in Brassica napus[J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1199-1209.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jouroilcrops.cn/EN/10.19802/j.issn.1007-9084.2021259
Table 1
Primer sequence
引物名称 Primer name | 序列(5’-3’) Sequence (5’-3’) | 用途 Usage | 扩增产物 Amplification (gene) |
---|---|---|---|
P1 | ATTAGCGCTAGGGACGTGAG | PCR | I.variabilis-EPSPS* |
P2 | ATACGCTCCCACATCCTGTC | ||
P3 | GGAGGGTCTTCGCAGTCG) | qRT-PCR | I.variabilis-EPSPS* |
P4 | GCTGTGCTCGGTCTTAGGG | ||
P5 | GGAAGCTCCTGGAATCCATGAGA | qRT-PCR | Actin |
P6 | TCTTTGCTCATACGGTCAGCAATTCC |
Table 2
Brassica napus genetic transformation medium
培养基种类 Medium type | 培养基组成 Medium composition | pH |
---|---|---|
发芽培养基 Germination medium | MS+20 g/L Sucrose (蔗糖)+0.8% Agar (琼脂) | 5.8~5.9 |
悬浮培养基 Suspension medium | MS+200 μmol AS(乙酰丁香酮) | 5.4~5.5 |
预培养培养基 Pre-culture medium | MS+30 g/L Sucrose+1 mg/L 6-BA+1 mg/L 2,4-D+8.0 g/L Agar | 5.8~5.9 |
共培养培养基 Co-culture medium | MS+30 g/L Sucrose+18 g/L Mannitol (甘露醇)+1 mg/L 2,4-D+0.3 mg/L KT (激动素, kinetin)+100 μmol/L AS+8.0 g/L Agar | 5.8~5.9 |
脱菌培养基 Sterilization medium | MS+30 g/L Sucrose+18 g/L Mannitol+1 mg/L 2,4-D+0.3 mg/L KT+100 μmol/L AS+8.0 g/L Agar | 5.8~5.9 |
芽再生培养基 Germination medium | MS+10 g/LGlucose (葡萄糖)+0.25 g/L Xylopyranose (木糖)+0.6 g/L MES (吗啉乙磺酸)+2.0 mg/L ZT+0.1 mg/L IAA+300 mg/L Timentin (抑菌剂)+60 mg/L Glyphosate(草甘膦)+8 g/L Agar | 5.8~5.9 |
生根培养基 Root regeneration medium | MS+10 g/L Sucrose+300 mg/L Timentin+8.0 g/L Agar | 5.8~5.9 |
Table 3
Herbicide injury severity
HIS | 草甘膦处理下植株的受损症状Injury symptoms on glyphosater-treated plants |
---|---|
0 | 植株生长正常No symptom |
1 | 植株生长受到轻微抑制,极少叶片掉落,没有其他受损症状 Plant growth inhibited slightly. Entire plant wilted, all leaves droop slightly, but no other symptom occurred |
2 | 包括嫩叶在内少于30%的叶片卷曲和坏死 Entire plant wilts including the young leaves. Leaf apex curls and etiolates. Less than 30% of leaves have necrotic |
3 | 幼叶卷曲和坏死,整株植物30%~60%的叶片枯萎 Young leaves curls and etiolate. Entire plant etiolates. 30-60% of leaves are dead |
4 | 整株植物叶片60%~80%枯萎死亡 Young leaf curls more. Entire plant etiolates more. 60-80% of leaves are dead |
5 | 植株超过80%的叶片死亡或整个植株死亡 Entire plant wilts completely. More than 80% of leaves are dead, or entire plant dead |
Fig. 2
Expression of I. variabilis-EPSPS* and Southern blot result of I.variabilis-EPSPS* transgenic plantsNote: A: 1-4: the sample after Roundup treatment, 5-8: the sample before Roundup treatment; B: Relative expression of gene I.variabilis-EPSPS*; CK: Expression of I. variabilis-EPSPS* before Roundup treatment; 0: Plants treated with water; 200×, 400× and 800× represent dilution multiples of Roundup; C: Southern blot ananlysis in I.variabilis-EPSPS* transgenic plants, M: DNAMaker; P: I.variabilis-EPSPS* gene expression vector plasmid; 1, 2, 3, 5, 7: transgenic plants; Hind III and EcoR I: restriction endonucleases
Fig. 3
Glyphosate tolerance comparison between the E1T1 generation with I.variabilis-EPSPS* gene and its receptor during seed germinationNote: A ~B: The growth of E1T1 and Yu127 on three concentrations of glyphosate medium after 7 days; C: Root length of E1T1 and Yu127; D: Hypocotyl length of E1T1 and Yu127 (Different lowercase letters indicate significant differences at P <0.05, the same as the follow picture)
Fig. 4
Glyphosate resistance evaluation of E1T1 generation with I.variabilis-EPSPS* gene in the greenhouseNote: A: The growth status of E1T1 on three-concentration Roundup treatment after 9 d; B: The growth status of Yu127 after 9d Roundup treatment; CK: Plants treated with water; 200×, 400× and 800× represent the dilution multiples of Roundup herbicide
Fig. 5
Shikimic acid accumulation of E1T1 lines with I.variabilis-EPSPS* geneNote: A: Shikimic acid titration standard curve; B, C: Shikimic acid accumulation dynamic of E1T1 and Yu127 (after sprayed with 200×, 400× and 800× concentrations of Roundup); CK: Plants treated with water; 200×, 400× and 800× represent the dilution multiples of Roundup
Table 5 Agronomic performance of the E1T1 with I.variabilis-EPSPS* gene in greenhouse
材料名称Material (稀释倍数Dilution factor) | 表型 Phenotype | 考察数量 Test number | ||
---|---|---|---|---|
角果长 SL /mm | 每角果粒数 NSS /mm | 千粒重 TSW /g | ||
E1T1(0) | 55.40±1.02a | 25.40±1.62a | 2.85±0.04a | 10 |
E1T1(1000×) | 54.20±2.99a | 23.80±2.79a | 2.80±0.13a | 10 |
E1T1(800×) | 54.40±2.07a | 25.20±2.28a | 2.79±0.07a | 10 |
E1T1(600×) | 53.60±1.02a | 23.60±1.02a | 2.74±0.20a | 10 |
育127 Yu 127 (0) | 54.80±2.39a | 24.40±3.36a | 2.83±0.06a | 10 |
育127 Yu 127 (1000×) | — | — | — | 10 |
育127 Yu 127 (800×) | — | — | — | 10 |
育127 Yu 127 (600×) | — | — | — | 10 |
1 | 赵波. 甘蓝型油菜矮秆基因定位、克隆及功能分析[D]. 武汉: 华中农业大学, 2017. |
2 |
苏少泉. 稻田杂草对除草剂的抗性及其防治[J]. 农药, 2001, 40(7): 11-14. DOI:10.16820/j.cnki.1006-0413.2001.07.002 .
doi: 10.16820/j.cnki.1006-0413.2001.07.002 |
3 |
Green J M. Evolution of glyphosate-resistant crop technology[J]. Weed Sci, 2009, 57(1): 108-117. DOI:10.1614/ws-08-030.1 .
doi: 10.1614/ws-08-030.1 |
4 |
Duke S O, Powles S B. Glyphosate: a once-in-a-century herbicide[J]. Pest Manag Sci, 2008, 64(4): 319-325. DOI:10.1002/ps.1518 .
doi: 10.1002/ps.1518 |
5 |
Cerdeira A L, Duke S O. The current status and environmental impacts of glyphosate-resistant crops[J]. J Environ Qual, 2006, 35(5): 1633-1658. DOI:10.2134/jeq2005.0378 .
doi: 10.2134/jeq2005.0378 |
6 |
Dill G M. Glyphosate-resistant crops: history, status and future[J]. Pest Manag Sci, 2005, 61(3): 219-224. DOI:10.1002/ps.1008 .
doi: 10.1002/ps.1008 |
7 |
Roberts F, Roberts C W, Johnson J J, et al. Evidence for the shikimate pathway in apicomplexan parasites[J]. Nature, 1998, 393(6687): 801-805. DOI:10.1038/31723 .
doi: 10.1038/31723 |
8 |
Dill G M, Cajacob C A, Padgette S R. Glyphosate-resistant crops: adoption, use and future considerations[J]. Pest Manag Sci, 2008, 64(4): 326-331. DOI:10.1002/ps.1501 .
doi: 10.1002/ps.1501 |
9 |
苏少泉. 草甘膦述评[J]. 农药, 2005, 44(4): 145-149. DOI:10.16820/j.cnki.1006-0413.2005.04.001 .
doi: 10.16820/j.cnki.1006-0413.2005.04.001 |
10 |
Bradshaw L D, Padgette S R, Kimball S L, et al. Perspectives on glyphosate resistance[J]. Weed Technol, 1997, 11(1): 189-198. DOI:10.1017/s0890037x00041567 .
doi: 10.1017/s0890037x00041567 |
11 |
Shaner D L. Lessons learned from the history of herbicide resistance[J]. Weed Sci, 2014, 62(2): 427-431. DOI:10.1614/ws-d-13-00109.1 .
doi: 10.1614/ws-d-13-00109.1 |
12 |
Shaner D L, Lindenmeyer R B, Ostlie M H. What have the mechanisms of resistance to glyphosate taught us? [J]. Pest Manag Sci, 2012, 68(1): 3-9. DOI:10.1002/ps.2261 .
doi: 10.1002/ps.2261 |
13 |
Pollegioni L, Schonbrunn E, Siehl D. Molecular basis of glyphosate resistance-different approaches through protein engineering[J]. Febs J, 2011, 278(16): 2753-2766. DOI:10.1111/j.1742-4658.2011.08214.x .
doi: 10.1111/j.1742-4658.2011.08214.x |
14 |
Wakelin A M, Preston C. A target-site mutation is present in a glyphosate-resistant Lolium rigidum population[J]. Weed Res, 2006, 46(5): 432-440. DOI:10.1111/j.1365-3180.2006.00527.x .
doi: 10.1111/j.1365-3180.2006.00527.x |
15 |
Preston C, Wakelin A M. Resistance to glyphosate from altered herbicide translocation patterns[J]. Pest Manag Sci, 2008, 64(4): 372-376. DOI:10.1002/ps.1489 .
doi: 10.1002/ps.1489 |
16 |
Vila-Aiub M M, Balbi M C, Distéfano A J, et al. Glyphosate resistance in perennial Sorghum halepense (Johnsongrass), endowed by reduced glyphosate translocation and leaf uptake[J]. Pest Manag Sci, 2012, 68(3): 430-436. DOI:10.1002/ps.2286 .
doi: 10.1002/ps.2286 |
17 | 柳寒, 周永明. 抗草甘膦基因mEPSPS转化油菜研究[J]. 中国油料作物学报, 2012, 34(6): 582-585. |
18 | 王景雪, 赵福永, 徐培林, 等. 油菜转抗草甘膦、抗虫基因获得双抗植株[J]. 遗传学报, 2005, 32: 1293-1300. |
19 |
万丽丽, 王转茸, 辛强, 等. GOX-CP4EPSP转化甘蓝型油菜的抗草甘膦研究[J]. 湖北农业科学, 2016, 55(10): 2661-2666. DOI:10.14088/j.cnki.issn0439-8114.2016.10.053 .
doi: 10.14088/j.cnki.issn0439-8114.2016.10.053 |
20 |
Comai L, Sen L C, Stalker D M. An altered AroA gene product confers resistance to the herbicide glyphosate[J]. Science, 1983, 221(4608): 370-371. DOI:10.1126/science.221.4608.370 .
doi: 10.1126/science.221.4608.370 |
21 |
Yang X, Li L, Jiang X Q, et al. Genetically engineered rice endogenous 5-enolpyruvoylshikimate-3-phosphate synthase (epsps) transgene alters phenology and fitness of crop-wild hybrid offspring[J]. Sci Rep, 2017, 7: 6834. DOI:10.1038/s41598-017-07089-9 .
doi: 10.1038/s41598-017-07089-9 |
22 |
Green J M. The rise and future of glyphosate and glyphosate-resistant crops[J]. Pest Manag Sci, 2018, 74(5): 1035-1039. DOI:10.1002/ps.4462 .
doi: 10.1002/ps.4462 |
23 |
Zhou M, Xu H L, Wei X L, et al. Identification of a glyphosate-resistant mutant of rice 5-enolpyruvylshikimate 3-phosphate synthase using a directed evolution strategy[J]. Plant Physiol, 2006, 140(1): 184-195. DOI:10.1104/pp.105.068577 .
doi: 10.1104/pp.105.068577 |
24 | 李杰华. 抗广谱性除草剂转基因油菜创制及抗性评价[D]. 武汉: 华中农业大学, 2018. |
25 |
Yi S Y, Wu G B, Lin Y J, et al. Characterization of a new type of glyphosate-tolerant 5-enolpyruvyl shikimate-3-phosphate synthase from Isoptericola variabilis [J]. J Mol Catal B: Enzym, 2015, 111: 1-8. DOI:10.1016/j.molcatb.2014.11.009 .
doi: 10.1016/j.molcatb.2014.11.009 |
26 |
Cui Y, Huang S Q, Liu Z D, et al. Development of novel glyphosate-tolerant Japonica rice lines: a step toward commercial release[J]. Front Plant Sci, 2016, 7: 1218. DOI:10.3389/fpls.2016.01218 .
doi: 10.3389/fpls.2016.01218 |
27 |
Cui Y, Li C Y, Zhou F, et al. Developing of transgenic glyphosate-tolerant Indica restorer line with commercial application potential[J]. Mol Breed, 2020, 40(4): 1-13. DOI:10.1007/s11032-020-01124-w .
doi: 10.1007/s11032-020-01124-w |
28 | 李杰华, 端群, 史明涛, 等. 新型抗广谱性除草剂草甘膦转基因油菜的创制及其鉴定[J]. 作物学报, 2021, 47: 778-787. |
29 |
Zhou Y, Wang H, Gilmer S, et al. Control of petal and pollen development by the plant cyclin-dependent kinase inhibitor ICK1 in transgenic Brassica plants[J]. Planta, 2002, 215(2): 248-257. DOI:10.1007/s00425-002-0752-2 .
doi: 10.1007/s00425-002-0752-2 |
30 |
Song X L, Wu J J, Zhang H J, et al. Occurrence of glyphosate-resistant horseweed (Conyza canadensis) population in China[J]. Agric Sci China, 2011, 10(7): 1049-1055. DOI:10.1016/S1671-2927(11)60093-X .
doi: 10.1016/S1671-2927(11)60093-X |
31 |
娄远来, 邓渊钰, 沈晋良, 等. 甲磺隆和草甘膦对空心莲子草乙酰乳酸合酶活性和莽草酸含量的影响[J]. 植物保护学报, 2005, 32(2): 185-188. DOI:10.3321/j.issn: 0577-7518.2005.02.015 .
doi: 10.3321/j.issn: 0577-7518.2005.02.015 |
32 |
Liu X E, Li X G, Hai L, et al. How efficient is film fully-mulched ridge-furrow cropping to conserve rainfall in soil at a rainfed site? [J]. Field Crops Res, 2014, 169: 107-115. DOI:10.1016/j.fcr.2014.09.014 .
doi: 10.1016/j.fcr.2014.09.014 |
33 |
Watson A, Ghosh S, Williams M J, et al. Speed breeding is a powerful tool to accelerate crop research and breeding[J]. Nat Plants, 2018, 4(1): 23-29. DOI:10.1038/s41477-017-0083-8 .
doi: 10.1038/s41477-017-0083-8 |
34 |
Wang Z, Wan L, Zhang X, et al. Interaction between Brassica napus polygalacturonase inhibition proteins and Sclerotinia sclerotiorum polygalacturonase: implications for rapeseed resistance to fungal infection[J]. Planta, 2021, 253(2): 34. DOI:10.1007/s00425-020-03556-2 .
doi: 10.1007/s00425-020-03556-2 |
[1] | Jing-xiu YE, Hai-dong LIU, Xiao-rong XING, Jun LI, De-zhi DU. Relationship between chlorophyll content and yield and development of chlorophyll major QTL cqSPDA2 linkage marker in Brassica napus [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1173-1181. |
[2] | Mei XIONG, Guang-sheng YANG, Deng-feng HONG, Zhao-yang WANG. Genetic improvement and application of resistance to clubroot in male parent of Brassica napus hybrid Shengguang 168 [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1182-1189. |
[3] | Yan-cheng WEN, Jun-ping HE, Dong-fang CAI, Shu-fen ZHANG, Jia-cheng ZHU, Jian-ping WANG, Jin-hua CAO, Kun HU, Lei ZHAO, Dong-guo WANG, Yi-zi LIU. Genetic rule of cuticular wax in Brassica napus L. and their roles in stress resistance [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1190-1198. |
[4] | Zi-xiang ZOU, Ying LIU, Ding-gang ZHOU, Li-li LIU, Da-wei ZHANG, Jin-feng WU, Mei LI, Ming-li YAN. Allelopathy of Brassica napus straw aqueous extract on germination and growth of rice [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1286-1295. |
[5] | Sheng-bo WANG, Yi-ming HUANG, Cong-yuan LIANG, Jing WANG, Qing-yong YANG. Construction of fingerprint for Brassica napus germplasm by genome-wide SNPs [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 966-972. |
[6] | Cheng CUI, Hao-jie LI, Jin-fang ZHANG, Ben-chuan ZHENG, Liang CHAI, Jun JIANG, Ka ZHANG, Hai-yan QIN, Zai-yun LI, Liang-cai JIANG. Preliminary study on Songyou 2 for oilseeds and cruciferous vegetable [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 973-980. |
[7] | Xue-cai LI, Jiao-jiao JIN, Li MA, Jun-yan WU, Qi-xian CHEN, Rui ZENG, Xiu-cun ZENG, Xiao-ru CUI, Wan-cang SUN. Relationship between height of growth point and cold resistance in strong winter rape (Brassica napus L.) in Northern China [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 739-750. |
[8] | Xiao-qin WU, You-yi WANG, Yi-kai TONG, Jian-feng ZHANG, Bin-jie GU, Fan XU, Feng REN. Resistance to low temperature stresses of BnPHR1 overexpressing transgenic Brassica napus [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 751-761. |
[9] | Yu-jin WU, Kai XU, Ju-rong SONG, Lun ZHAO, Jing WEN, Bin YI, Chao-zhi MA, Jin-xiong SHEN, Ting-dong FU, Jin-xing TU. Phenotypic identification and gene mapping of cotyledon yellowing lethality mutant ytl in Brassica napus [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 762-769. |
[10] | Rong ZUO, Shan WU, Jie LIU, Ming HU, Xiao-hui CHENG, Yue-ying LIU, Ze-tao BAI, Sheng-yi LIU. Genome-wide characterization of F-box-LRR genes and their transcript response to Sclerotinia sclerotiorum induction in Brassica napus [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 503-514. |
[11] | Bo ZHU, Qi-wen XU, Shu-min MA, Bang-yan LIU, Mei-chun DUAN, Long-chang WANG. Effect of potassium deficiency on endogenous hormones, photosynthesis and characteristics of chlorophyll fluorescence in Brassica napus under drought stress [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 570-580. |
[12] | Yu-qian WANG, Cheng-sheng CHAO, Jing DAI, Xin-jie SHEN, Yin-shui LI, Chi-ming GU, Li-hua XIE, Xiao-jia HU, Lu QIN, Xing LIAO. Difference in carbon and nitrogen metabolism of rapeseed (Brassica napus L.) with contrasting nitrogen efficiency at seedling stage [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 589-601. |
[13] | Liang XU, Jian-rong LIN, De-zhi DU. Identification and screening of elite germplasm for spring rapeseed area by genotyping and phenotyping [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(2): 280-288. |
[14] | Yu-qin ZHANG, Zhi-fan YANG, Yue LI, Yin-shui LI, Xiao-jia HU, Lu QIN, Xing LIAO. Effect of exogenous trehalose on seed germination and seedling growth of rapeseed under low temperature [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(2): 376-384. |
[15] | Le GAO, Zhi-qiang LI, Kai LI, Hai-jian ZHI. Advances in transgenic resistance to soybean mosaic virus disease [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(2): 434-441. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||