CHINESE JOURNAL OF OIL CROP SCIENCES ›› 2022, Vol. 44 ›› Issue (6): 1286-1295.doi: 10.19802/j.issn.1007-9084.2021267
Previous Articles Next Articles
Zi-xiang ZOU1,2(), Ying LIU1,2, Ding-gang ZHOU1,2,3(
), Li-li LIU1,2,3, Da-wei ZHANG1,2,3, Jin-feng WU1,2,3, Mei LI4, Ming-li YAN1,2,3(
)
Received:
2021-10-22
Online:
2022-12-25
Published:
2022-11-24
Contact:
Ding-gang ZHOU,Ming-li YAN
E-mail:251886102@qq.com;dgzhoucn@163.com;ymljack@126.com
CLC Number:
Zi-xiang ZOU, Ying LIU, Ding-gang ZHOU, Li-li LIU, Da-wei ZHANG, Jin-feng WU, Mei LI, Ming-li YAN. Allelopathy of Brassica napus straw aqueous extract on germination and growth of rice[J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1286-1295.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jouroilcrops.cn/EN/10.19802/j.issn.1007-9084.2021267
Table 1
Effects of rape straw aqueous extract on germination rate and germination index
处理 Treatments | 水浸液浓度 Aqueous extract concentration /% | 五优308 Wuyou 308 | C两优343 C Liangyou 343 | ||
---|---|---|---|---|---|
发芽率 Germination rate /% | 发芽指数 Germination index | 发芽率 Germination rate /% | 发芽指数 Germination index | ||
CK | 0 | 38.0±8.7abc | 2.9±0.9abc | 17.3±13.4ab | 1.0±0.8a |
沣油737 Fengyou737 | 25 | 37.3±7.6abc | 3.1±0.5ab | 20.0±7.8a | 1.1±0.5a |
50 | 33.3±6.2bc | 2.7±0.6bc | 11.3±3.0ab | 0.8±0.1a | |
75 | 36.7±5.3abc | 2.9±0.4abc | 16.7±3.3ab | 1.1±0.3a | |
湘杂油553 Xiangzayou553 | 25 | 43.3±10.5ab | 3.1±0.6ab | 12.7±2.8ab | 0.7±0.2a |
50 | 36.0±2.8bc | 2.3±0.2bc | 10.0±7.8ab | 0.5±0.5a | |
75 | 35.3±6.1bc | 2.3±0.4bc | 9.3±8.3ab | 0.5±0.4a | |
中双11 Zhongshuang 11 | 25 | 46.7±11.1a | 3.6±0.9a | 18.0±7.3ab | 1.1±0.5a |
50 | 30.7±10.9c | 2.1±1.0c | 8.7±5.1b | 0.5±0.4a | |
75 | 34.0±9.5bc | 2.3±0.8bc | 12.7±4.3ab | 0.7±0.3a |
Table 2
ANOVA of germination rate and germination index
主效应 Main effects | 指标 Index | 五优308 Wuyou 308 | C两优343 C Liangyou 343 | ||
---|---|---|---|---|---|
F | P | F | P | ||
秸秆品种 | 发芽率Germination rate | 0.241 | 0.787 | 1.798 | 0.180 |
Straw type | 发芽指数Germination index | 0.525 | 0.595 | 3.241 | 0.048* |
水浸液浓度 | 发芽率Germination rate | 3.329 | 0.027* | 2.098 | 0.113 |
Aqueous extract concentration | 发芽指数Germination index | 4.906 | 0.005** | 2.290 | 0.090 |
秸秆品种×水浸液浓度 | 发芽率Germination rate | 0.665 | 0.678 | 0.452 | 0.840 |
Straw type ×Aqueous extract concentration | 发芽指数Germination index | 0.804 | 0.572 | 0.766 | 0.600 |
Table 3
Effects of rape straw aqueous extract on seedlings height, fresh weight and maximum root length
处理 Treatments | 水浸液浓度 Aqueous extract concentration /% | 五优308 Wuyou308 | C两优343 C Liangyou343 | ||||
---|---|---|---|---|---|---|---|
苗高 Seedling height /mm | 鲜重 Fresh weight /mg | 根长 Root length /mm | 苗高 Seedling height /mm | 鲜重 Fresh weight /mg | 根长 Root length /mm | ||
CK | 0 | 70.52±9.51e | 65.36±13.18fg | 87.04±16.14ab | 63.73±21.32c | 65.86±36.36b | 61.67±24.59abc |
沣油737 Fengyou737 | 25 | 83.76±7.42ab | 89.80±13.08bc | 89.76±12.47a | 61.72±20.85c | 64.34±30.49b | 63.15±26.01ab |
50 | 76.40±6.63cd | 73.30±12.57ef | 91.88±14.65a | 66.92±10.46abc | 73.38±19.37ab | 57.63±11.66bcd | |
75 | 82.08±6.87b | 87.71±11.70cd | 73.58±16.30c | 66.88±11.69bc | 70.61±22.64b | 53.98±13.85bcd | |
湘杂油553 Xiangzayo553 | 25 | 83.76±10.18ab | 97.66±16.72ab | 79.60±20.86bc | 77.46±12.19a | 88.66±19.77a | 72.38±19.79a |
50 | 81.60±8.13bc | 80.34±14.59de | 75.40±21.89c | 68.50±17.27abc | 71.48±26.18ab | 48.33±16.29cde | |
75 | 73.08±10.40de | 61.99±12.43g | 31.28±17.04e | 60.55±14.21c | 62.26±26.46b | 36.45±14.37e | |
中双11 Zhongshuang11 | 25 | 87.76±7.41a | 99.42±15.69a | 91.48±23.97a | 74.43±9.73ab | 89.34±15.10a | 73.04±17.45a |
50 | 80.50±13.19bc | 82.79±23.46cd | 77.88±23.83bc | 66.55±14.31abc | 69.99±26.48ab | 44.73±14.31de | |
75 | 70.00±14.47e | 67.97±14.94fg | 43.21±15.17d | 59.19±12.74c | 59.58±18.80b | 38.13±12.69e |
Table 4
Allelopathic response indexes of different rice seedlings on rape straw aqueous extract
处理Treatments | 水浸液浓度 Aqueous extract concentration /% | 化感效应指数Response index (RI) | |||||
---|---|---|---|---|---|---|---|
五优308 Wuyou 308 | C两优343 C Liangyou 343 | ||||||
苗高 Seedling height | 鲜重 Fresh weight | 根长 Root length | 苗高 Seedling height | 鲜重 Fresh weight | 根长 Root length | ||
CK | 0 | — | — | — | — | ||
沣油737 Fengyou737 | 25 | 0.16 | 0.27 | 0.03 | -0.03 | -0.02 | 0.02 |
50 | 0.08 | 0.11 | 0.05 | 0.05 | 0.10 | -0.07 | |
75 | 0.14 | 0.25 | -0.15 | 0.05 | 0.07 | -0.12 | |
湘杂油553 Xiangzayou553 | 25 | 0.16 | 0.33 | -0.09 | 0.18 | 0.26 | 0.15 |
50 | 0.14 | 0.19 | -0.13 | 0.07 | 0.08 | -0.22 | |
75 | 0.04 | -0.05 | -0.64 | -0.05 | -0.05 | -0.41 | |
中双11 Zhongshuang 11 | 25 | 0.20 | 0.34 | 0.05 | 0.14 | 0.26 | 0.16 |
50 | 0.12 | 0.21 | -0.11 | 0.04 | 0.06 | -0.27 | |
75 | -0.01 | 0.04 | -0.50 | -0.07 | -0.10 | -0.38 |
Table 5
The synthesis effect of different types of rice on rape straw aqueous extract
处理 Treatments | 水浸液浓度 Aqueous extract concentration /% | 化感综合效应Synthesis effect | 平均Average | 排名 Ranking | ||
---|---|---|---|---|---|---|
五优308 Wuyou308 | C两优343 C Liangyou343 | 五优308 Wuyou308 | C两优343 C Liangyou343 | |||
CK | 0 | — | — | — | — | — |
沣油737 Fengyou737 | 25 | 0.061 | 0.178 | 0.016 | 0.008 | 1 |
50 | -0.013 | -0.221 | ||||
75 | 0.001 | 0.066 | ||||
湘杂油553 Xiangzayou553 | 25 | 0.207 | -0.122 | -0.040 | -0.282 | 3 |
50 | -0.081 | -0.337 | ||||
75 | -0.246 | -0.388 | ||||
中双11 Zhongshuang 11 | 25 | 0.295 | 0.097 | -0.025 | -0.141 | 2 |
50 | -0.151 | -0.321 | ||||
75 | -0.220 | -0.198 |
Fig. 1
Effect of rape straw aqueous extract on soluble protein content and MDA content of rice seedlingsNote: A and B indicate the soluble protein content of Wuyou 308 and C Liangyou 343 seedlings respectively, C and D indicate the malondialdehyde content of Wuyou 308 and C Liangyou 343 seedlings respectively; Different lowercase letters indicate significant differences among treatments with different concentrations (P<0.05)
Fig. 2
Effect of rape straw aqueous extract on the activity of T-SOD and POD of seedlings.Note: A and B indicate the T-SOD activity of Wuyou 308 and C Liangyou 343 rice seedlings respectively, C and D indicate the POD activity of Wuyou 308 and C Liangyou 343 rice seedlings respectively; Different lowercase letters indicate significant differences among treatments with different concentrations (P < 0.05)
1 | Molish HB. Der Einfluss einer Pflanze auf die andere, Allelopathie[M]. Jena: Verlag von Gustav Fischer, 1937. |
2 | Rehman M W U, Hussain M, Ali M, et al. Allelopathy of Brassica. A review[J]. Scientia Agriculturae, 2013, 8: 222-229. |
3 |
Hussain M I, El-Sheikh M A, Reigosa M J. Allelopathic potential of aqueous extract from Acacia melanoxylon R. Br. on Lactuca sativa [J]. Plants, 2020, 9(9): 1228. DOI:10.3390/plants9091228 .
doi: 10.3390/plants9091228 |
4 |
Mutlu S, Atici Ö. Allelopathic effect of Nepetameyeri Benth. extracts on seed germination and seedling growth of some crop plants[J]. Acta Physiol Plant, 2009, 31(1): 89-93. DOI:10.1007/s11738-008-0204-0 .
doi: 10.1007/s11738-008-0204-0 |
5 |
Zhang X, Wang Z W, Li H Y. Allelopathic effects of Koelreuteria integrifoliola leaf aqueous extracts on Lolium perenne related to mesophyll ultrastructural alterations and endogenous hormone contents[J]. Acta Physiol Plant, 2021, 43(9): 1-9. DOI:10.1007/s11738-021-03303-4 .
doi: 10.1007/s11738-021-03303-4 |
6 |
Singh H P, Batish D R, Kohli R K. Allelopathy in agroecosystems[J]. J Crop Prod, 2001, 4(2): 1-41. DOI:10.1300/j144v04n02_01 .
doi: 10.1300/j144v04n02_01 |
7 |
Williamson G B, Weidenhamer J D. Bacterial degradation of juglone[J]. J Chem Ecol, 1990, 16(5): 1739-1742. DOI:10.1007/BF01014105 .
doi: 10.1007/BF01014105 |
8 |
Jabran K. Allelopathy of Brassicaceae plants to weeds [M]. Switzerland: Zhan, 2017, 21-27. DOI: 10.1007/978-3-319-53186-1_3
doi: 10.1007/978-3-319-53186-1_3 |
9 |
Shekhawat K, Rathore S S, Dass A, et al. Weed menace and management strategies for enhancing oilseed brassicas production in the Indian sub-continent: a review[J]. Crop Prot, 2017, 96: 245-257. DOI:10.1016/j.cropro.2017.02.017 .
doi: 10.1016/j.cropro.2017.02.017 |
10 |
Al-Sherif E, Hegazy A K, Gomaa N H, et al. Allelopathic effect of black mustard tissues and root exudates on some crops and weeds[J]. Planta Daninha, 2013, 31(1): 11-19. DOI:10.1590/s0100-83582013000100002 .
doi: 10.1590/s0100-83582013000100002 |
11 |
Rehman S, Shahzad B, Bajwa A A, et al. Utilizing the allelopathic potential of Brassica species for sustainable crop production: a review[J]. J Plant Growth Regul, 2019, 38(1): 343-356. DOI:10.1007/s00344-018-9798-7 .
doi: 10.1007/s00344-018-9798-7 |
12 | Uremis I, Arslan M, Uludag A, et al. Allelopathic potentials of residues of 6 Brassica species on Johnsongrass [Sorghum halepense (L.) Pers.] [J]. African Journal of Biotechnology, 2009, 8(15): 3497-3501. |
13 |
Fahey J W, Zalcmann A T, Talalay P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants[J]. Phytochemistry, 2001, 56(1): 5-51. DOI:10.1016/s0031-9422(00)00316-2 .
doi: 10.1016/s0031-9422(00)00316-2 |
14 |
Jabran K, Mahajan G, Sardana V, et al. Allelopathy for weed control in agricultural systems[J]. Crop Prot, 2015, 72: 57-65. DOI:10.1016/j.cropro.2015.03.004 .
doi: 10.1016/j.cropro.2015.03.004 |
15 |
Shah A N, Iqbal J, Ullah A, et al. Allelopathic potential of oil seed crops in production of crops: a review[J]. Environ Sci Pollut Res Int, 2016, 23(15): 14854-14867. DOI:10.1007/s11356-016-6969-6 .
doi: 10.1007/s11356-016-6969-6 |
16 |
Mehmood A, Naeem M, Khalid F, et al. Identification of phytotoxins in different plant parts of Brassica napus and their influence on mung bean[J]. Environ Sci Pollut Res Int, 2018, 25(18): 18071-18080. DOI:10.1007/s11356-018-2043-x .
doi: 10.1007/s11356-018-2043-x |
17 |
朱芸, 闫金垚, 丛日环, 等. 油菜与小麦秸秆浸出液对水稻种子萌发及幼苗生长的影响[J]. 中国油料作物学报, 2021, 43(2): 241-250. DOI:10.19802/j.issn.1007-9084.2019232 .
doi: 10.19802/j.issn.1007-9084.2019232 |
18 |
Bruce Williamson G, Richardson D. Bioassays for allelopathy: measuring treatment responses with independent controls[J]. J Chem Ecol, 1988, 14(1): 181-187. DOI:10.1007/BF01022540 .
doi: 10.1007/BF01022540 |
19 |
王娜, 马绍英, 马蕾, 等. 肉桂酸和棕榈酸对豌豆种子萌发和幼苗生长的化感效应[J]. 植物生理学报, 2021, 57(8): 1657-1667. DOI:10.13592/j.cnki.ppj.2020.0611 .
doi: 10.13592/j.cnki.ppj.2020.0611 |
20 |
Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Anal Biochem, 1976, 72: 248-254. DOI:10.1006/abio.1976.9999 .
doi: 10.1006/abio.1976.9999 |
21 |
魏云霞, 鲁剑巍, 李小坤, 等. 不同秸秆及绿肥浸提液对水稻的化感作用研究[J]. 中国农学通报, 2013, 29(30): 18-22. DOI:10.3969/j.issn.1000-6850.2013.30.003 .
doi: 10.3969/j.issn.1000-6850.2013.30.003 |
22 |
Sheldon K, Purdom S, Shekoofa A, et al. Allelopathic impact of cover crop species on soybean and goosegrass seedling germination and early growth[J]. Agriculture, 2021, 11(10): 965. DOI:10.3390/agriculture11100965 .
doi: 10.3390/agriculture11100965 |
23 |
Mitić N, Stanišić M, Savić J, et al. Physiological and cell ultrastructure disturbances in wheat seedlings generated by Chenopodium murale hairy root exudate[J]. Protoplasma, 2018, 255(6): 1683-1692. DOI:10.1007/s00709-018-1250-0 .
doi: 10.1007/s00709-018-1250-0 |
24 |
Scrivanti L R, Anton A M. Germination inhibitory activity of aqueous extracts of native grasses from South America[J]. Rodriguésia, 2021, 72. DOI:10.1590/2175-7860202172028 .
doi: 10.1590/2175-7860202172028 |
25 |
Shearer T, Rasher D, Snell T, et al. Gene expression patterns of the coral Acropora millepora in response to contact with macroalgae[J]. Coral Reefs, 2012, 31(4): 1177-1192. DOI:10.1007/s00338-012-0943-7 .
doi: 10.1007/s00338-012-0943-7 |
26 |
Ahuja N, Singh H P, Batish D R, et al. Eugenol-inhibited root growth in Avena fatua involves ROS-mediated oxidative damage[J]. Pestic Biochem Physiol, 2015, 118: 64-70. DOI:10.1016/j.pestbp.2014.11.012 .
doi: 10.1016/j.pestbp.2014.11.012 |
27 |
Hegab M M, Ghareib H R. Methanol extract potential of field bindweed (Convolvulus arvensis L.) for wheat growth enhancement[J]. International J Botany, 2010, 6(3): 334-342. DOI:10.3923/ijb.2010.334.342 .
doi: 10.3923/ijb.2010.334.342 |
28 |
高玉莲, 李睿光, 常静, 等. 油菜对3种作物种子萌发和幼苗生长的化感作用[J]. 应用生态学报, 2020, 31(12): 4153-4160. DOI:10.13287/j.1001-9332.202012.002 .
doi: 10.13287/j.1001-9332.202012.002 |
29 |
Hamad S Al-Hawas G, Mahgoub Azooz M. Allelopathic potentials of Artrmisia monosperma and Thymus vulgaris on growth and physio-biochemical characteristics of pea seedlings[J]. Pak J Biol Sci, 2018, 21(4): 187-198. DOI:10.3923/pjbs.2018.187.198 .
doi: 10.3923/pjbs.2018.187.198 |
30 |
Blokhina O, Virolainen E, Fagerstedt K V. Antioxidants, oxidative damage and oxygen deprivation stress: a review[J]. Ann Bot, 2003, 91 Spec No(2): 179-194. DOI:10.1093/aob/mcf118 .
doi: 10.1093/aob/mcf118 |
31 |
Hua Q, Liu Y G, Yan Z L, et al. Allelopathic effect of the rice straw aqueous extract on the growth of Microcystis aeruginosa [J]. Ecotoxicol Environ Saf, 2018, 148: 953-959. DOI:10.1016/j.ecoenv.2017.11.049 .
doi: 10.1016/j.ecoenv.2017.11.049 |
32 |
Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants[J]. Plant Physiol Biochem, 2010, 48(12): 909-930. DOI:10.1016/j.plaphy.2010.08.016 .
doi: 10.1016/j.plaphy.2010.08.016 |
33 |
Murimwa J C, Rugare J T, Mabasa S, et al. Allelopathic effects of aqueous extracts of Sorghum (Sorghum bicolor L. moench) on the early seedling growth of sesame (Sesamum indicum L.) varieties and selected weeds[J]. Int J Agron, 2019, 2019: 5494756. DOI:10.1155/2019/5494756 .
doi: 10.1155/2019/5494756 |
34 |
钱凯荣, 马增岭, 李仁辉, 等. 植物化感作用研究进展: 以抑制铜绿微囊藻生长为例[J]. 生物技术通报, 2021, 37(4): 177-193. DOI:10.13560/j.cnki.biotech.bull.1985.2020-1158 .
doi: 10.13560/j.cnki.biotech.bull.1985.2020-1158 |
35 |
Ming Y, Hu G X, Li J, et al. Allelopathic effects of Castanea henryi aqueous extracts on the growth and physiology of Brassica pekinensis and Zea mays [J]. Chem Biodivers, 2020, 17(6): e2000135. DOI:10.1002/cbdv.202000135 .
doi: 10.1002/cbdv.202000135 |
36 |
Quan X L, Qiao Y M, Chen M C, et al. Comprehensive evaluation of the allelopathic potential of Elymus nutans [J]. Ecol Evol, 2021, 11(18): 12389-12400. DOI:10.1002/ece3.7982 .
doi: 10.1002/ece3.7982 |
37 |
Elbouzidi A, Bencheikh N, Seddoqi S, et al. Investigation of the allelopathic effect of Matricaria chamomilla L. parts’ aqueous extracts on germination and seedling growth of two Moroccan varieties of durum wheat[J]. Int J Agron, 2021, 2021: 4451181. DOI:10.1155/2021/4451181 .
doi: 10.1155/2021/4451181 |
38 | Abbas T, Tanveer A, Khaliq A, et al. Comparative allelopathic potential of native and invasive weeds in rice ecosystem[J]. Pakistan Journal of Weed Science Research, 2016, 22(4): 269-283. |
[1] | Jing-xiu YE, Hai-dong LIU, Xiao-rong XING, Jun LI, De-zhi DU. Relationship between chlorophyll content and yield and development of chlorophyll major QTL cqSPDA2 linkage marker in Brassica napus [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1173-1181. |
[2] | Mei XIONG, Guang-sheng YANG, Deng-feng HONG, Zhao-yang WANG. Genetic improvement and application of resistance to clubroot in male parent of Brassica napus hybrid Shengguang 168 [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1182-1189. |
[3] | Yan-cheng WEN, Jun-ping HE, Dong-fang CAI, Shu-fen ZHANG, Jia-cheng ZHU, Jian-ping WANG, Jin-hua CAO, Kun HU, Lei ZHAO, Dong-guo WANG, Yi-zi LIU. Genetic rule of cuticular wax in Brassica napus L. and their roles in stress resistance [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1190-1198. |
[4] | Shuai DU, Li-li WAN, Zhuan-rong WANG, Yi XU, Deng-feng HONG, Guang-sheng YANG. Genetic transformation and resistance evaluation of glyphosate resistance gene in Brassica napus [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1199-1209. |
[5] | Sheng-bo WANG, Yi-ming HUANG, Cong-yuan LIANG, Jing WANG, Qing-yong YANG. Construction of fingerprint for Brassica napus germplasm by genome-wide SNPs [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 966-972. |
[6] | Cheng CUI, Hao-jie LI, Jin-fang ZHANG, Ben-chuan ZHENG, Liang CHAI, Jun JIANG, Ka ZHANG, Hai-yan QIN, Zai-yun LI, Liang-cai JIANG. Preliminary study on Songyou 2 for oilseeds and cruciferous vegetable [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 973-980. |
[7] | Xue-cai LI, Jiao-jiao JIN, Li MA, Jun-yan WU, Qi-xian CHEN, Rui ZENG, Xiu-cun ZENG, Xiao-ru CUI, Wan-cang SUN. Relationship between height of growth point and cold resistance in strong winter rape (Brassica napus L.) in Northern China [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 739-750. |
[8] | Xiao-qin WU, You-yi WANG, Yi-kai TONG, Jian-feng ZHANG, Bin-jie GU, Fan XU, Feng REN. Resistance to low temperature stresses of BnPHR1 overexpressing transgenic Brassica napus [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 751-761. |
[9] | Yu-jin WU, Kai XU, Ju-rong SONG, Lun ZHAO, Jing WEN, Bin YI, Chao-zhi MA, Jin-xiong SHEN, Ting-dong FU, Jin-xing TU. Phenotypic identification and gene mapping of cotyledon yellowing lethality mutant ytl in Brassica napus [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 762-769. |
[10] | Rong ZUO, Shan WU, Jie LIU, Ming HU, Xiao-hui CHENG, Yue-ying LIU, Ze-tao BAI, Sheng-yi LIU. Genome-wide characterization of F-box-LRR genes and their transcript response to Sclerotinia sclerotiorum induction in Brassica napus [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 503-514. |
[11] | Bo ZHU, Qi-wen XU, Shu-min MA, Bang-yan LIU, Mei-chun DUAN, Long-chang WANG. Effect of potassium deficiency on endogenous hormones, photosynthesis and characteristics of chlorophyll fluorescence in Brassica napus under drought stress [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 570-580. |
[12] | Yu-qian WANG, Cheng-sheng CHAO, Jing DAI, Xin-jie SHEN, Yin-shui LI, Chi-ming GU, Li-hua XIE, Xiao-jia HU, Lu QIN, Xing LIAO. Difference in carbon and nitrogen metabolism of rapeseed (Brassica napus L.) with contrasting nitrogen efficiency at seedling stage [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 589-601. |
[13] | Liang XU, Jian-rong LIN, De-zhi DU. Identification and screening of elite germplasm for spring rapeseed area by genotyping and phenotyping [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(2): 280-288. |
[14] | Yu-qin ZHANG, Zhi-fan YANG, Yue LI, Yin-shui LI, Xiao-jia HU, Lu QIN, Xing LIAO. Effect of exogenous trehalose on seed germination and seedling growth of rapeseed under low temperature [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(2): 376-384. |
[15] | Fang WANG, Rui-mao ZHANG, Sha HUANG, Rong TANG, Lu-lu WANG, Bin YANG, Zhuan-zhuan WANG, Yuan-yu YANG, Min WANG, De-gang ZHAO, Chao LI. Creation of Brassica napus dwarf material LSW2018 [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(1): 1-6. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||