CHINESE JOURNAL OF OIL CROP SCIENCES ›› 2022, Vol. 44 ›› Issue (6): 1228-1238.doi: 10.19802/j.issn.1007-9084.2021268
Previous Articles Next Articles
Bo WANG(), Ying-ying DONG, Xue FU, He-yu LIU, Xiang-chao ZHANG, Ji LIU, Fei-fei SHI, Xue ZHAO, Ying-peng HAN, Wen-bin LI, Wei-li TENG(
)
Received:
2021-10-25
Online:
2022-12-25
Published:
2022-11-24
Contact:
Wei-li TENG
E-mail:wangbo_181030@163.com;twlneau@163.com
CLC Number:
Bo WANG, Ying-ying DONG, Xue FU, He-yu LIU, Xiang-chao ZHANG, Ji LIU, Fei-fei SHI, Xue ZHAO, Ying-peng HAN, Wen-bin LI, Wei-li TENG. Construction of high density genetic map and QTL mapping of yield related traits in soybean[J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1228-1238.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jouroilcrops.cn/EN/10.19802/j.issn.1007-9084.2021268
Table 1
ANOVA of yield related traits in parents
性状 Trait | 年份 Year | 地点 Site | 亲本Parents | 显著性Significance | |
---|---|---|---|---|---|
东农42 Dongnong 42 | 东农50 Dongnong 50 | ||||
四粒荚数 NFSP | 2019 | XY | 9.80 | 40.57 | ** |
AC | 11.11 | 39.50 | ** | ||
HL | 10.80 | 33.14 | ns | ||
平均值 Mean | 10.57 | 37.74 | ** | ||
2020 | XY | 4.70 | 31.00 | ** | |
AC | 9.30 | 22.43 | ** | ||
HL | 6.10 | 46.83 | ** | ||
平均值 Mean | 6.70 | 33.42 | ** | ||
单株荚数 NPPP | 2019 | XY | 43.60 | 83.71 | ** |
AC | 63.33 | 80.50 | ns | ||
HL | 71.20 | 73.14 | ns | ||
平均值 Mean | 59.38 | 79.12 | ** | ||
2020 | XY | 40.50 | 76.64 | ** | |
AC | 49.60 | 51.29 | ns | ||
HL | 68.20 | 97.25 | * | ||
平均值 Mean | 52.77 | 75.06 | ** | ||
单株粒重 /g SWPP | 2019 | XY | 14.48 | 11.08 | ns |
AC | 30.02 | 12.05 | ** | ||
HL | 29.44 | 11.91 | ** | ||
平均值 Mean | 24.65 | 11.68 | ** | ||
2020 | XY | 15.71 | 13.50 | ns | |
AC | 23.97 | 8.03 | ** | ||
HL | 30.35 | 18.39 | ** | ||
平均值 Mean | 23.34 | 13.31 | ** | ||
百粒重 /g HSW | 2019 | XY | 17.56 | 7.33 | ** |
AC | 19.54 | 6.36 | ** | ||
HL | 19.80 | 9.23 | ** | ||
平均值 Mean | 18.97 | 7.64 | ** | ||
2020 | XY | 18.68 | 7.22 | ** | |
AC | 19.69 | 6.28 | ** | ||
HL | 20.83 | 8.29 | ** | ||
平均值 Mean | 19.73 | 7.27 | ** |
Table 2
Statistical analysis of phenotype data of yield related traits in RILs in 2 years
性状 Trait | 年份 Year | 地点 Site | 平均值±标准偏差 Mean ± SD | 方差 Variance | 峰度 Kurtosis | 偏度 Skewness | 范围 Range | 变异系数 /% Coefficient of variation |
---|---|---|---|---|---|---|---|---|
四粒荚数 NFSP | 2019 | XY | 13.18±7.88 | 62.03 | 6.96 | 1.87 | 1.67~58.00 | 59.79 |
AC | 17.62±9.50 | 90.28 | 5.25 | 1.33 | 1.40~72.00 | 53.92 | ||
HL | 13.76±8.40 | 70.58 | 1.10 | 0.96 | 0.60~46.60 | 61.05 | ||
2020 | XY | 9.65±5.39 | 29.08 | 4.08 | 1.28 | 0.80~37.80 | 55.85 | |
AC | 15.38±7.31 | 53.49 | 0.61 | 0.59 | 1.40~39.80 | 47.53 | ||
HL | 15.30±10.13 | 102.71 | 1.64 | 1.30 | 0.20~50.00 | 66.21 | ||
单株荚数 NPPP | 2019 | XY | 48.24±15.04 | 226.30 | 1.76 | 0.75 | 13.20~106.33 | 31.18 |
AC | 60.92±19.70 | 388.02 | 11.53 | 2.13 | 15.80~191.00 | 32.34 | ||
HL | 55.70±19.08 | 364.18 | -0.17 | 0.16 | 14.25~114.20 | 34.25 | ||
2020 | XY | 44.60±11.58 | 134.05 | 1.37 | 0.73 | 16.00~93.40 | 25.96 | |
AC | 55.46±15.74 | 247.66 | 3.42 | 1.51 | 28.40~122.00 | 28.38 | ||
HL | 65.51±31.13 | 968.94 | 11.30 | 2.45 | 11.60~267.00 | 47.52 | ||
单株粒重 /g SWPP | 2019 | XY | 12.38±4.31 | 18.56 | 0.06 | 0.27 | 1.70~24.08 | 34.81 |
AC | 18.15±5.95 | 35.39 | 0.76 | 0.37 | 3.10~40.79 | 32.78 | ||
HL | 15.98±6.75 | 45.54 | -0.09 | 0.38 | 2.96~34.65 | 42.24 | ||
2020 | XY | 13.01±3.36 | 11.30 | 0.23 | 0.48 | 4.61~21.89 | 25.83 | |
AC | 17.63±5.45 | 29.65 | 3.18 | 1.27 | 7.90~41.54 | 30.91 | ||
HL | 21.22±9.78 | 95.67 | 4.93 | 1.43 | 1.74~74.00 | 46.09 | ||
百粒重 /g HSW | 2019 | XY | 13.84±2.49 | 6.20 | 1.11 | 0.33 | 6.44~23.15 | 17.99 |
AC | 14.01±2.66 | 7.05 | 1.12 | 0.09 | 5.41~22.01 | 18.99 | ||
HL | 14.82±2.55 | 6.49 | 0.25 | 0.08 | 8.11~21.57 | 17.21 | ||
2020 | XY | 13.86±2.73 | 7.47 | 0.74 | 0.39 | 6.99~23.13 | 19.70 | |
AC | 13.93±2.77 | 7.70 | -0.15 | -0.02 | 5.79~21.56 | 19.89 | ||
HL | 15.66±2.91 | 8.45 | 0.00 | 0.23 | 7.66~23.61 | 18.58 |
Table 3
Phenotypic correlation analysis of RIL population in 2 years
地点 Site | 性状 Trait | 2019 | 2020 | ||||||
---|---|---|---|---|---|---|---|---|---|
四粒荚数 NFSP | 单株荚数 NPPP | 单株粒重/g SWPP | 百粒重/g HSW | 四粒荚数 NFSP | 单株荚数 NPPP | 单株粒重/g SWPP | 百粒重/g HSW | ||
XY | 四粒荚数NFSP | 1 | 1 | ||||||
单株荚数NPPP | 0.634** | 1 | 0.418** | 1 | |||||
单株粒重SWPP /g | 0.493** | 0.719** | 1 | 0.402** | 0.663** | 1 | |||
百粒重HSW /g | -0.162* | -0.255** | 0.327** | 1 | -0.147 | -0.328** | 0.378** | 1 | |
AC | 四粒荚数NFSP | 1 | 1 | ||||||
单株荚数NPPP | 0.530** | 1 | 0.330** | 1 | |||||
单株粒重SWPP /g | 0.495** | 0.570** | 1 | 0.387** | 0.594** | 1 | |||
百粒重HSW /g | -0.018 | -0.253** | 0.443** | 1 | -0.009 | -0.355** | 0.359** | 1 | |
HL | 四粒荚数NFSP | 1 | 1 | ||||||
单株荚数NPPP | 0.409** | 1 | 0.409** | 1 | |||||
单株粒重SWPP /g | 0.524** | 0.794** | 1 | 0.548** | 0.857** | 1 | |||
百粒重HSW /g | 0.121 | -0.106 | 0.368** | 1 | -0.006 | -0.206** | 0.189* | 1 |
Table 4
Statistics of sequencing sample quality, coverage depth and coverage rate
样品 Sample | Q30 /% | GC含量 /% GC percentage | 平均覆盖深度 Average coverage depth | 覆盖率 Coverage ratio /% | ||
---|---|---|---|---|---|---|
1× | 5× | 10× | ||||
东农42 Dongnong 42 | 93.36 | 34.84 | 20.00 | 95.46 | 93.75 | 88.05 |
东农50 Dongnong 50 | 91.77 | 34.70 | 20.00 | 95.00 | 92.69 | 85.68 |
家系 Population | 93.16 | 34.72 | 3.18 | 79.71 | 25.40 | 3.99 |
Table 5
Distribution of markers on the genetic map
连锁群 Linkage group | 总标记数 Total bin marker | 遗传距离 /cM Total distance | 标记间距离 /cM Average distance | 最大间隔 /cM Max gap | 间隔<5 cM /% Gaps< 5 cM |
---|---|---|---|---|---|
LG1 | 381 | 126.63 | 0.33 | 12.48 | 98.95 |
LG2 | 431 | 173.81 | 0.40 | 11.99 | 99.30 |
LG3 | 334 | 196.78 | 0.59 | 13.99 | 98.20 |
LG4 | 277 | 136.09 | 0.49 | 8.83 | 98.91 |
LG5 | 233 | 179.06 | 0.77 | 11.51 | 99.14 |
LG6 | 325 | 138.77 | 0.43 | 10.59 | 97.84 |
LG7 | 417 | 143.21 | 0.34 | 11.99 | 99.28 |
LG8 | 274 | 179.07 | 0.65 | 10.59 | 98.17 |
LG9 | 338 | 138.46 | 0.41 | 8.41 | 98.81 |
LG10 | 370 | 130.71 | 0.35 | 5.65 | 99.46 |
LG11 | 200 | 111.03 | 0.56 | 16.74 | 97.49 |
LG12 | 272 | 128.93 | 0.47 | 6.98 | 99.26 |
LG13 | 330 | 137.19 | 0.42 | 10.59 | 98.78 |
LG14 | 339 | 127.41 | 0.38 | 15.60 | 98.82 |
LG15 | 385 | 113.35 | 0.29 | 6.80 | 99.22 |
LG16 | 195 | 120.82 | 0.62 | 8.83 | 97.42 |
LG17 | 386 | 113.41 | 0.29 | 7.19 | 99.74 |
LG18 | 200 | 114.35 | 0.57 | 16.17 | 98.49 |
LG19 | 288 | 130.91 | 0.45 | 13.99 | 97.91 |
LG20 | 252 | 99.16 | 0.39 | 9.70 | 98.80 |
总计 | 6227 | 2739.15 | 0.44 | 16.74 | 98.70 |
Table 6
Spearman correlation coefficient between each linkage group and the relative position of the genome
连锁群 Linkage group | 相关系数 Spearman | 连锁群 Linkage group | 相关系数 Spearman |
---|---|---|---|
LG01 | 0.9981 | LG11 | 0.9989 |
LG02 | 0.9995 | LG12 | 0.9956 |
LG03 | 0.9840 | LG13 | 0.9741 |
LG04 | 0.9982 | LG14 | 0.9801 |
LG05 | 0.9861 | LG15 | 0.9991 |
LG06 | 0.9968 | LG16 | 0.9986 |
LG07 | 0.9987 | LG17 | 0.9861 |
LG08 | 0.9933 | LG18 | 0.9997 |
LG09 | 0.9987 | LG19 | 0.9968 |
LG10 | 0.9924 | LG20 | 0.9952 |
Table 7
QTL mapping of yield-related traits of soybean by CIM
QTL | 染色体 Chromosome | 物理位置 /bp Physical range | LOD | 贡献率 /% PVE | 加性效应 Add. | 年份 Year | 地点 Site | Ref. |
---|---|---|---|---|---|---|---|---|
qNFSP-8-1 | 8 | 18171282~21181502 | 5.087 | 8.915 | 2.563 | 2019 | HL | [ |
qNFSP-19-1 | 19 | 34865941~37422324 | 4.803 | 22.976 | -4.144 | 2019 | AC | [ |
qNFSP-19-2 | 19 | 35356498~37800692 | 6.279 | 11.977 | -2.499 | 2019 | XY | [ |
qNFSP-19-3 | 19 | 30746155~35339221 | 3.000 | 17.203 | -4.204 | 2020 | HL | [ |
qNFSP-20-3 | 20 | 33631879~33971450 | 3.000 | 0.142 | -0.382 | 2020 | HL | |
qNPPP-4-1 | 4 | 8168209~8471127 | 3.000 | 6.501 | 4.924 | 2019 | HL | [ |
qNPPP-6-1 | 6 | 18144998~19180397 | 3.000 | 9.820 | 4.623 | 2019 | XY | [ |
qNPPP-7-1 | 7 | 17987596~19031108 | 3.000 | 11.281 | 5.816 | 2019 | AC | |
qNPPP-20-1 | 20 | 41304839~41350689 | 3.000 | 9.137 | 9.622 | 2020 | HL | |
qSWPP-5-1 | 5 | 6447056~7171137 | 3.000 | 3.875 | -12.934 | 2020 | HL | [ |
qSWPP-9-1 | 9 | 42195057~42407536 | 6.092 | 16.117 | -2.434 | 2019 | AC | [ |
qSWPP-11-1 | 11 | 34251028~34358125 | 4.444 | 11.436 | -1.478 | 2019 | XY | |
qSWPP-12-1 | 12 | 4658062~4688094 | 3.000 | 8.025 | -1.925 | 2019 | HL | |
qSWPP-12-2 | 12 | 3549085~4479867 | 3.000 | 10.346 | -1.097 | 2020 | XY | [ |
qHSW-3-1 | 3 | 42465725~43531846 | 5.791 | 11.346 | -0.866 | 2019 | HL | |
qHSW-3-2 | 3 | 41985108~42809563 | 5.915 | 11.175 | -0.824 | 2019 | XY | |
qHSW-3-3 | 3 | 41693822~42236422 | 4.428 | 14.276 | -1.095 | 2020 | HL | |
qHSW-4-1 | 4 | 13228201~13290797 | 3.000 | 10.324 | -0.836 | 2019 | AC | [ |
qHSW-4-2 | 4 | 6541082~6642783 | 3.000 | 10.889 | -0.858 | 2019 | AC | [ |
qHSW-4-3 | 4 | 8003512~8098546 | 5.791 | 19.200 | -1.126 | 2019 | HL | [ |
qHSW-4-4 | 4 | 5826114~5870620 | 4.963 | 21.816 | -1.273 | 2020 | XY | [ |
qHSW-13-1 | 13 | 30885715~31031029 | 5.801 | 11.274 | -0.922 | 2020 | AC | [ |
1 |
杜维广, 盖钧镒. 大豆超高产育种研究进展的讨论[J]. 土壤与作物, 2014, 3(3): 81-92. DOI:10.11689/j.issn.2095-2961.2014.03.001 .
doi: 10.11689/j.issn.2095-2961.2014.03.001 |
2 |
Chen Q S, Zhang Z C, Liu C Y, et al. QTL analysis of major agronomic traits in soybean[J]. Agric Sci China, 2007, 6(4): 399-405. DOI:10.1016/S1671-2927(07)60062-5 .
doi: 10.1016/S1671-2927(07)60062-5 |
3 |
Liu D Q, Yan Y L, Fujita Y, et al. Identification and validation of QTLs for 100-seed weight using chromosome segment substitution lines in soybean[J]. Breed Sci, 2018, 68(4): 442-448. DOI:10.1270/jsbbs.17127 .
doi: 10.1270/jsbbs.17127 |
4 |
Specht J E, Hume D J, Kumudini S V. Soybean yield potential-A genetic and physiological perspective[J]. Crop Sci, 1999, 39(6): 1560-1570. DOI:10.2135/cropsci1999.3961560x .
doi: 10.2135/cropsci1999.3961560x |
5 |
陈欢, 张文英, 樊龙江. 作物育种方法研究进展与展望[J]. 科技通报, 2011, 27(1): 61-65. DOI:10.13774/j.cnki.kjtb.2011.01.019 .
doi: 10.13774/j.cnki.kjtb.2011.01.019 |
6 |
张芳, 谢皓, 陈学珍. 大豆分子标记辅助育种研究进展[J]. 北京农学院学报, 2010, 25(2): 73-77. DOI:10.13473/j.cnki.issn.1002-3186.2010.02.006 .
doi: 10.13473/j.cnki.issn.1002-3186.2010.02.006 |
7 |
Hoeck J A, Fehr W R, Shoemaker R C, et al. Molecular marker analysis of seed size in soybean[J]. Crop Sci, 2003, 43(1): 68. DOI:10.2135/cropsci2003.6800 .
doi: 10.2135/cropsci2003.6800 |
8 |
Fu S X, Zhan Y, Zhi H J, et al. Mapping of SMV resistance gene Rsc-7 by SSR markers in soybean[J]. Genetica, 2006, 128(1/2/3): 63-69. DOI:10.1007/s10709-005-5535-9 .
doi: 10.1007/s10709-005-5535-9 |
9 |
Qi Z M, Hou M, Han X, et al. Identification of quantitative trait loci (QTLs) for seed protein concentration in soybean and analysis for additive effects and epistatic effects of QTLs under multiple environments[J]. Plant Breeding, 2014, 133(4): 499-507. DOI:10.1111/pbr.12179 .
doi: 10.1111/pbr.12179 |
10 |
Lee S, Freewalt K R, McHale L K, et al. A high-resolution genetic linkage map of soybean based on 357 recombinant inbred lines genotyped with BARCSoySNP6K[J]. Mol Breed, 2015, 35(2): 1-7. DOI:10.1007/s11032-015-0209-5 .
doi: 10.1007/s11032-015-0209-5 |
11 |
Pawlowski M L, Vuong T D, Valliyodan B, et al. Whole-genome resequencing identifies quantitative trait loci associated with mycorrhizal colonization of soybean[J]. Theor Appl Genet, 2020, 133(2): 409-417. DOI:10.1007/s00122-019-03471-5 .
doi: 10.1007/s00122-019-03471-5 |
12 |
Boudhrioua C, Bastien M, Torkamaneh D, et al. Genome-wide association mapping of Sclerotinia sclerotiorum resistance in soybean using whole-genome resequencing data[J]. BMC Plant Biol, 2020, 20(1): 195. DOI:10.1186/s12870-020-02401-8 .
doi: 10.1186/s12870-020-02401-8 |
13 | 郝德荣. 大豆产量相关性状QTL的关联分析及候选基因GmGA3ox单倍型鉴定[D]. 南京: 南京农业大学, 2011. |
14 |
Yao D, Liu Z Z, Zhang J, et al. Analysis of quantitative trait loci for main plant traits in soybean[J]. Genet Mol Res, 2015, 14(2): 6101-6109. DOI:10.4238/2015.June.8.8 .
doi: 10.4238/2015.June.8.8 |
15 |
韩英鹏, 栗春霞, 赵雪, 等. 大豆产量相关性状QTL定位[J]. 东北农业大学学报, 2020, 51(11): 1-10. DOI:10.19720/j.cnki.issn.1005-9369.2020.11.01 .
doi: 10.19720/j.cnki.issn.1005-9369.2020.11.01 |
16 |
Shim S, Kim M Y, Ha J, et al. Identification of QTLs for branching in soybean (Glycine max (L.) Merrill)[J]. Euphytica, 2017, 213(9): 1-9. DOI:10.1007/s10681-017-2016-z .
doi: 10.1007/s10681-017-2016-z |
17 |
Karikari B, Chen S X, Xiao Y T, et al. Utilization of interspecific high-density genetic map of RIL population for the QTL detection and candidate gene mining for 100-seed weight in soybean[J]. Front Plant Sci, 2019, 10: 1001. DOI:10.3389/fpls.2019.01001 .
doi: 10.3389/fpls.2019.01001 |
18 |
Broman K W, Wu H, Sen S, et al. R/qtl: QTL mapping in experimental crosses[J]. Bioinformatics, 2003, 19(7): 889-890. DOI:10.1093/bioinformatics/btg112 .
doi: 10.1093/bioinformatics/btg112 |
19 | 邱丽娟, 常汝镇. 大豆种质资源描述规范和数据标准[M]. 北京: 中国农业出版社, 2006. |
20 |
喻志学, 魏彩姣, 李艺萌, 等. 转基因大豆DNA提取方法研究[J]. 广东化工, 2016, 43(18): 23-24. DOI:10.3969/j.issn.1007-1865.2016.18.010 .
doi: 10.3969/j.issn.1007-1865.2016.18.010 |
21 |
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform[J]. Bioinformatics, 2009, 25(14): 1754-1760. DOI:10.1093/bioinformatics/btp324 .
doi: 10.1093/bioinformatics/btp324 |
22 | McCouch S R, Chen X, Panaud O, et al. Microsatellite marker development, mapping and applications in rice genetics and breeding[J]. Plant Mol Biol, 1997, 35(1/2): 89-99. |
23 |
Li D M, Sun M M, Han Y P, et al. Identification of QTL underlying soluble pigment content in soybean stems related to resistance to soybean white mold (Sclerotinia sclerotiorum)[J]. Euphytica, 2010, 172(1): 49-57. DOI:10.1007/s10681-009-0036-z .
doi: 10.1007/s10681-009-0036-z |
24 |
Sun D S, Li W B, Zhang Z C, et al. Quantitative trait loci analysis for the developmental behavior of soybean (Glycine max L. Merr.)[J]. Theor Appl Genet, 2006, 112(4): 665-673. DOI:10.1007/s00122-005-0169-y .
doi: 10.1007/s00122-005-0169-y |
25 |
Kato S, Sayama T, Fujii K, et al. A major and stable QTL associated with seed weight in soybean across multiple environments and genetic backgrounds[J]. Theor Appl Genet, 2014, 127(6): 1365-1374. DOI:10.1007/s00122-014-2304-0 .
doi: 10.1007/s00122-014-2304-0 |
26 |
Vieira A J D, de Oliveira D A, Soares T C B, et al. Use of the QTL approach to the study of soybean trait relationships in two populations of recombinant inbred lines at the F7 and F8 generations[J]. Braz J Plant Physiol, 2006, 18(2): 281-290. DOI:10.1590/s1677-04202006000200004 .
doi: 10.1590/s1677-04202006000200004 |
27 |
Funatsuki H, Kawaguchi K, Matsuba S, et al. Mapping of QTL associated with chilling tolerance during reproductive growth in soybean[J]. Theor Appl Genet, 2005, 111(5): 851-861. DOI:10.1007/s00122-005-0007-2 .
doi: 10.1007/s00122-005-0007-2 |
28 |
Kuroda Y, Kaga A, Tomooka N, et al. QTL affecting fitness of hybrids between wild and cultivated soybeans in experimental fields[J]. Ecol Evol, 2013, 3(7): 2150-2168. DOI:10.1002/ece3.606 .
doi: 10.1002/ece3.606 |
29 |
Orf J H, Chase K, Jarvik T, et al. Genetics of soybean agronomic traits[J]. Crop Science, 1999, 39(6): 1642-1651. DOI:10.2135/cropsci1999.3961642x .
doi: 10.2135/cropsci1999.3961642x |
30 |
Hacisalihoglu G, Burton A L, Gustin J L, et al. Quantitative trait loci associated with soybean seed weight and composition under different phosphorus levels[J]. J Integr Plant Biol, 2018, 60(3): 232-241. DOI:10.1111/jipb.12612 .
doi: 10.1111/jipb.12612 |
31 |
Yang K, Moon J K, Jeong N, et al. Novel major quantitative trait loci regulating the content of isoflavone in soybean seeds[J]. Genes Genom, 2011, 33(6): 685-692. DOI:10.1007/s13258-011-0043-z .
doi: 10.1007/s13258-011-0043-z |
32 |
Rossi M E, Orf J H, Liu L J, et al. Genetic basis of soybean adaptation to North American vs. Asian mega-environments in two independent populations from Canadian × Chinese crosses[J]. Theor Appl Genet, 2013, 126(7): 1809-1823. DOI:10.1007/s00122-013-2094-9 .
doi: 10.1007/s00122-013-2094-9 |
33 |
Eskandari M, Cober E R, Rajcan I. Genetic control of soybean seed oil: II. QTL and genes that increase oil concentration without decreasing protein or with increased seed yield[J]. Theor Appl Genet, 2013, 126(6): 1677-1687. DOI:10.1007/s00122-013-2083-z .
doi: 10.1007/s00122-013-2083-z |
34 |
Yan L, Li Y H, Yang C Y, et al. Identification and validation of an over-dominant QTL controlling soybean seed weight using populations derived from Glycine max × Glycine soja [J]. Plant Breed, 2014, 133(5): 632-637. DOI:10.1111/pbr.12197 .
doi: 10.1111/pbr.12197 |
35 |
Teng W, Han Y, Du Y, et al. QTL analyses of seed weight during the development of soybean (Glycine max L. Merr.)[J]. Heredity, 2009, 102(4): 372-380. DOI:10.1038/hdy.2008.108 .
doi: 10.1038/hdy.2008.108 |
36 |
Jiang B, Liu W R, Xie D S, et al. High-density genetic map construction and gene mapping of pericarp color in wax gourd using specific-locus amplified fragment (SLAF) sequencing[J]. BMC Genomics, 2015, 16: 1035. DOI:10.1186/s12864-015-2220-y .
doi: 10.1186/s12864-015-2220-y |
37 |
Shang J L, Li N, Li N N, et al. Construction of a high-density genetic map for watermelon (Citrullus lanatus L.) based on large-scale SNP discovery by specific length amplified fragment sequencing (SLAF-seq)[J]. Sci Hortic, 2016, 203: 38-46. DOI:10.1016/j.scienta.2016.03.007 .
doi: 10.1016/j.scienta.2016.03.007 |
38 |
Keim P, Diers B W, Olson T C, et al. RFLP mapping in soybean: association between marker loci and variation in quantitative traits[J]. Genetics, 1990, 126(3): 735-742. DOI:10.1093/genetics/126.3.735 .
doi: 10.1093/genetics/126.3.735 |
39 | 朱明月. 利用回交导入系群体定位大豆蛋白质、脂肪含量及脂肪酸含量QTL[D]. 北京: 中国农业科学院, 2017. |
40 |
Zhang Y W, Li W, Lin Y H, et al. Construction of a high-density genetic map and mapping of QTLs for soybean (Glycine max) agronomic and seed quality traits by specific length amplified fragment sequencing[J]. BMC Genomics, 2018, 19(1): 641. DOI:10.1186/s12864-018-5035-9 .
doi: 10.1186/s12864-018-5035-9 |
41 |
Ma Y J, Ma W Y, Hu D Z, et al. QTL mapping for protein and sulfur-containing amino acid contents using a high-density Bin-map in soybean (Glycine max L. merr.)[J]. J Agric Food Chem, 2019, 67(44): 12313-12321. DOI:10.1021/acs.jafc.9b04497 .
doi: 10.1021/acs.jafc.9b04497 |
42 |
Fulton T M, Beck-Bunn T, Emmatty D, et al. QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species[J]. Theor Appl Genet, 1997, 95(5/6): 881-894. DOI:10.1007/s001220050639 .
doi: 10.1007/s001220050639 |
[1] | Chao-sen ZHAO, Xian-wei ZHAO, Rui-zhen WANG. Evolution of important agronomic traits of vegetable summer soybean varieties attending national regional test [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1218-1227. |
[2] | Li-long HOU, Hong-wei JIANG, Xin XIONG, Hai-yang ZHENG, Fu-bin CAO, Ru-ru WEI, Yi-chao ZHANG, Yu-xuan ZHAO, Meng-yao GUO, Qing-shan CHEN. Development and verification of molecular markers for QTLs related to the number of three-seeded pods in soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1239-1248. |
[3] | Wen-tian HU, Cai-jin WANG, Jing-hong DU, Yang WANG. Exploration of elite alleles on vigor-related traits in soybean at seed stage [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1249-1258. |
[4] | Ying ZHAI, Ting-ting MA, Jia-qi HE, Jun ZHANG, Ming-yang LI, Jiong-xin CHEN, Hai-wei YU, Shan-shan LI, Tian-guo SUN. Soybean GmDof2.2 improved the sensitivity of transgenic tobacco to salt stress [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1259-1266. |
[5] | Qing-wei FANG, Yan-zheng ZHANG, Ji-qiang ZHENG, Ze-yang LI, Yue LI, Jia-liang ZHAO, Xue-song WANG, Xing-chao CHANG, Long CHEN, Ya JING, Chun-xiao SONG, Yong-guang LI. Analysis of salt tolerance function of GmLecRlk gene in soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1267-1274. |
[6] | Xi-guo HAN, Bo YANG, De-bin YU, Chang-hong XU, Fan-gang MENG, Qiang QIU, Jing ZHAO, Ming-hao ZHANG, Xiao-yan YAN, Wei ZHANG. Response of yield and related traits of soybean varieties with different iron efficiency to Fe-EDDHA fertilizer in calcareous iron-deficient soils [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1329-1336. |
[7] | SACHURULA, BADUMUCAICIKE, Rui-lin TIAN, Zhan-ming HOU, Zhen-xing WANG. Effects of peanut, soybean and carrot as feed on development and adult survival of Dolycoris baccarum [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1337-1340. |
[8] | Yong-fang ZHANG, Ming-ming WANG, Li-hua ZHAO, Dong-xu ZHANG, Yong-fang JIA, Jian-min WANG, Ke-ying LI, Ling-xin CHEN. Comparison of nutrient composition changes of different soybean varieties during germination [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1368-1374. |
[9] | Su-qi JIAO, Jun-ming ZHOU, Yu-qing SHANG, Jia-xin WANG, Ai-jing ZHANG, Hao-bo HE, Qiu-zhu ZHAO, Yue LI, Dan YAO. Cloning and genetic transformation of soybean fatty acid dehydrogenase GmFAD3C-1 gene [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 1006-1017. |
[10] | Chun-juan YAN, Shu-hong SONG, Chang-ling WANG, Xu-gang SUN, Yong-qiang CAO, Li-jun ZHANG, Li ZHANG, Xiao-yang HUO, Wen-bin WANG. Effect of water stress in different phases on photosynthetic characteristics of drought-avoidant soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 1048-1056. |
[11] | Liang-qiang CHENG, Jian-bin GUO, Wei-tao LI, Li HUANG, Huai-yong LUO, Nian LIU, Xiao-jing ZHOU, Wei-gang CHEN, Jun WANG, Jian-wei LYU, Ting-hui HU, Qing-lin RAO, Yong LEI, Bo-shou LIAO, Hui-fang JIANG. Novel genotypes and quantitative trait locus for rust resistance in peanut [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 1074-1080. |
[12] | Xian-xu WANG, Hui-ming FAN, Ran OU, Lei WANG, Sui WANG, Yan JIANG, Shao-dong WANG. Methylene blue and β-carotene double fading method in soybean breeding of lipoxygenase free [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 1123-1129. |
[13] | Shi-hua XIANG, Hao YANG, Hong-yan YANG, Hua-wei YANG, Lin YU, Ya-bin HAN, Qing-yuan HE. Identification and genome-wide association analysis for tolerance to acid aluminum using Sichuan and Chongqing soybean germplasm [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 981-988. |
[14] | Chao MA, Miao-xin GUO, Sheng-nan MA, Yue WANG, Yu-tian SUN, Da-wei XIN, Qing-shan CHEN, Jin-hui WANG. Construction of HH103ΩNopAAΩNopD and effect of mutation on nodulation ability of soybean rhizobium [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 989-995. |
[15] | Shuai LIANG, Qing-shan CHEN, Zi-kun ZHU, Dong-dong LI, Zhao-ming QI, Da-wei XIN. Identification and analysis of soybean DELLA gene family [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 996-1005. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||