CHINESE JOURNAL OF OIL CROP SCIENCES ›› 2022, Vol. 44 ›› Issue (6): 1239-1248.doi: 10.19802/j.issn.1007-9084.2021275
Previous Articles Next Articles
Li-long HOU1(), Hong-wei JIANG2, Xin XIONG1, Hai-yang ZHENG1, Fu-bin CAO1, Ru-ru WEI1, Yi-chao ZHANG1, Yu-xuan ZHAO1, Meng-yao GUO1, Qing-shan CHEN1(
)
Received:
2021-10-31
Online:
2022-12-25
Published:
2022-11-24
Contact:
Qing-shan CHEN
E-mail:hllsbds@126.com;qshchen@126.com
CLC Number:
Li-long HOU, Hong-wei JIANG, Xin XIONG, Hai-yang ZHENG, Fu-bin CAO, Ru-ru WEI, Yi-chao ZHANG, Yu-xuan ZHAO, Meng-yao GUO, Qing-shan CHEN. Development and verification of molecular markers for QTLs related to the number of three-seeded pods in soybean[J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1239-1248.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jouroilcrops.cn/EN/10.19802/j.issn.1007-9084.2021275
Table 3
Sampling method of Real-time quantitative RCR
花荚发育阶段 Pod development stage | 取样日期 Sampling date (YY-MM-DD) | 取样部位 Sampling site | 样品数量 Samples quantity(20-50 mg) |
---|---|---|---|
花期1 Flowering stage 1 | 2020-07-20 | 花 Flower | 约10朵花 About 10 flowers |
花期2 Flowering stage 2 | 2020-07-27 | 花 Flower | 约5朵花About 5 flowers |
幼荚期 Podding stage | 2020-08-06 | 荚,取单株3-5节 Pod, located at notes 3-5 | 3个荚 3 pods |
Table 4
Fluorescence quantitative PCR primers
引物名称 Name | 序列(5'-3') Sequence | 碱基数 Base No. |
---|---|---|
Glyma.03G029800-F | CTTGCACCAGCTTGTTCAAGAAT | 23 |
Glyma.03G029800-R | GGTGCGAAAAACCCATCTTTCAT | 23 |
Glyma.13G063700-F | TGATGATCCTGATGCTGATCCAG | 23 |
Glyma.13G063700-R | TCTTGTAGCACACACTCAGACTC | 23 |
Glyma.17G062600-F | GATTCGGAGCTGAAGTCAACAATAG | 25 |
Glyma.17G062600-R | CAACAAACTCTTGCCTAGTCATGTT | 25 |
Glyma.17G062000-F | CGATCCTGACCACCCTATCATTT | 23 |
Glyma.17G062000-R | ACAGACAGAGCTAACTGATGCAA | 23 |
Table 5
Number of InDel primer bands
引物所在基因 | 引物名称 | 正向引物序列(5' to 3') | 反向引物序列(5' → 3') | 带型数 |
---|---|---|---|---|
The gene that primers are in | Primer name | Forword primer sequences | Reverse primer sequences | Number of belt type |
Glyma.03G2360272 | INDEL3-236027 | GGTTAGGTTGAAGGAATCGG | AGTGCTCTTACTTCTTACAC | 6 |
Glyma.03G2406695 | INDEL3-240669 | GAAAGTTATTAAATGGCATA | ATGGTGAAACTTATCATCTT | 6 |
Glyma.03G2500925 | INDEL3-250092 | ATGGGACAACAAAAAATAGG | GCTGCCTTTAGTTTTTCTTT | 6 |
Glyma.03G2803214 | INDEL3-280321 | CAGAAGCTCTCCACACCAAC | GTTGGATGGTCGGACTCGTA | 6 |
Glyma.03G3000279 | INDEL3-300027 | AAAAAATAGAACGCCATAGA | AGATGTCCTCTGCTTTAGTT | 6 |
Glyma.03G3114972 | INDEL3-311497 | TTTTTTTAAATCTAATCGGT | AAACTCGTCAGGTTACACTA | 3 |
Glyma.13G15201286 | INDEL13-152012 | CGTGGAATGCAAAGAAGTAA | TATTTTGAATAGTGGTTGCG | 3 |
Glyma.13G24003195 | INDEL13-240031 | TGGACACCATAGGACTCAAC | AAGCATTCTATCCATTCCAT | 3 |
Glyma.13G24606624 | INDEL13-246066 | GTTAAATTAAAAAGGAACAC | ATTACTACACAAGGGATTAT | 3 |
Glyma.13G25439674 | INDEL13-254396 | TTGTAAAGTAGAGCACCTCT | AACTAACAAATAACTCAACA | 5 |
Glyma.17G4401178 | INDEL17-440117 | GGTGTACCTTTACGATTCTT | TCTTTTCTCTTCAATCACCA | 4 |
Glyma.17G4620538 | INDEL17-462053 | TACATCAAATGACAAATCCA | CAGTTCACGACTATGTTTGT | 6 |
Table 6
Analysis table of band type variance of primers in resource population
引物名称 | 平方和 | df | 均方 | F | 显著性 |
---|---|---|---|---|---|
Primer name | Sum of squares | Mean square | Significance | ||
INDEL3-236027 | 0.17 | 5 | 0.03 | 1.40 | 0.23 |
INDEL3-240669 | 0.37 | 5 | 0.07 | 3.40 | 0.01** |
INDEL3-250092 | 0.58 | 5 | 0.12 | 5.98 | 0** |
INDEL3-280321 | 0.32 | 5 | 0.06 | 2.82 | 0.02* |
INDEL3-300027 | 0.77 | 5 | 0.15 | 9.35 | 0** |
INDEL3-311497 | 0.43 | 2 | 0.21 | 10.40 | 0** |
INDEL13-152012 | 0.67 | 2 | 0.34 | 19.50 | 0** |
INDEL13-240031 | 0.51 | 2 | 0.26 | 13.19 | 0** |
INDEL13-246066 | 0.39 | 2 | 0.20 | 9.34 | 0** |
INDEL13-254396 | 0.63 | 4 | 0.16 | 8.54 | 0** |
INDEL17-440117 | 0.34 | 3 | 0.11 | 5.14 | 0** |
INDEL17-462053 | 0.74 | 5 | 0.15 | 8.73 | 0** |
Table 7
Analysis of variance of primer bands in breeding populations
引物名称 Primer name | 群体 Population | 平方和 Sum of squares | df | 均方 Mean square | F | 显著性 Significance |
---|---|---|---|---|---|---|
INDEL3-240669 | 1 | 0.05 | 2 | 0.03 | 1.51 | 0.23 |
2 | 0.05 | 2 | 0.02 | 2.52 | 0.04* | |
3 | 0.03 | 2 | 0.02 | 1.01 | 0.37 | |
4 | 0.19 | 2 | 0.09 | 2.88 | 0.05* | |
INDEL3-250092 | 1 | 0.01 | 2 | 0.01 | 0.33 | 0.72 |
2 | 0.03 | 2 | 0.02 | 1.64 | 0.21 | |
3 | 0.1 | 2 | 0.05 | 3.32 | 0.05* | |
4 | 0.19 | 2 | 0.1 | 2.89 | 0.07 | |
INDEL3-280321 | 1 | 0.1 | 2 | 0.05 | 3.02 | 0.04* |
2 | 0.04 | 2 | 0.02 | 2.22 | 0.04* | |
3 | 0.03 | 2 | 0.02 | 1.03 | 0.37 | |
4 | 0.07 | 2 | 0.03 | 0.95 | 0.39 | |
INDEL3-300027 | 1 | 0.03 | 2 | 0.01 | 0.69 | 0.51 |
2 | 0.02 | 2 | 0.01 | 0.88 | 0.42 | |
3 | 0.01 | 2 | 0 | 0.24 | 0.79 | |
4 | 0.28 | 2 | 0.14 | 4.61 | 0.02* | |
INDEL3-311497 | 1 | 0.09 | 2 | 0.04 | 2.59 | 0.05* |
2 | 0.01 | 2 | 0.01 | 0.54 | 0.59 | |
3 | 0.08 | 2 | 0.04 | 2.81 | 0.04* | |
4 | 0.01 | 2 | 0 | 0.12 | 0.89 | |
INDEL13-152012 | 1 | 0.09 | 2 | 0.05 | 2.75 | 0.05* |
2 | 0.01 | 2 | 0 | 0.34 | 0.71 | |
3 | 0.11 | 2 | 0.05 | 3.67 | 0.04* | |
4 | 0.2 | 2 | 0.1 | 3.09 | 0.06 | |
INDEL13-240031 | 1 | 0.11 | 2 | 0.05 | 3.17 | 0.04* |
2 | 0.06 | 2 | 0.03 | 2.9 | 0.05* | |
3 | 0.05 | 2 | 0.02 | 1.4 | 0.26 | |
4 | 0.04 | 2 | 0.02 | 0.56 | 0.58 | |
INDEL13-246066 | 1 | 0.01 | 2 | 0 | 0.13 | 0.87 |
2 | 0.05 | 2 | 0.02 | 2.43 | 0.05* | |
3 | 0.02 | 2 | 0.01 | 0.47 | 0.63 | |
4 | 0.29 | 2 | 0.15 | 4.82 | 0.01** | |
INDEL13-254396 | 1 | 0.02 | 2 | 0.01 | 0.43 | 0.65 |
2 | 0.03 | 2 | 0.01 | 1.3 | 0.29 | |
3 | 0.15 | 2 | 0.07 | 5.38 | 0.01** | |
4 | 0.15 | 2 | 0.07 | 2.13 | 0.04* | |
INDEL17-440117 | 1 | 0.13 | 2 | 0.06 | 3.93 | 0.03* |
2 | 0.02 | 2 | 0.01 | 0.81 | 0.45 | |
3 | 0.06 | 2 | 0.03 | 1.86 | 0.17 | |
4 | 0.24 | 2 | 0.12 | 3.81 | 0.03* | |
INDEL17-462053 | 1 | 0.18 | 2 | 0.09 | 6.04 | 0.01** |
2 | 0.08 | 2 | 0.04 | 4.76 | 0.01** | |
3 | 0.14 | 2 | 0.07 | 5.08 | 0.01** | |
4 | 0.03 | 2 | 0.02 | 0.45 | 0.64 |
Fig. 5
Characterization of three-seeded pods of fluorescence quantitative materialNote: **: P≤0.01; L represents the materials with extremely low percentage of three pods in the resource population, and H represents the material with extremely high percentage of three pods in the resource population
1 |
Zhang J P, Song Q J, Cregan P B, et al. Genome-wide association study, genomic prediction and marker-assisted selection for seed weight in soybean (Glycine max)[J]. Theor Appl Genet, 2016, 129(1): 117-130. DOI:10.1007/s00122-015-2614-x .
doi: 10.1007/s00122-015-2614-x |
2 |
周新安, 王贤智, 蔡淑平, 等. 大豆重组自交系群体三、四粒荚变异及其与产量的关系[J]. 中国油料作物学报, 2005, 27(4): 22-25. DOI:10.3321/j.issn: 1007-9084.2005.04.005 .
doi: 10.3321/j.issn: 1007-9084.2005.04.005 |
3 |
de Carvalho C G P, Arias C A A, de Toledo J F F, et al. Interação genótipo x ambiente no desempenho produtivo da Soja no paraná[J]. Pesq Agropec Bras, 2002, 37(7): 989-1000. DOI:10.1590/s0100-204x2002000700013 .
doi: 10.1590/s0100-204x2002000700013 |
4 |
Keim P, Diers B W, Olson T C, et al. RFLP mapping in soybean: association between marker loci and variation in quantitative traits[J]. Genetics, 1990, 126(3): 735-742. DOI:10.1093/genetics/126.3.735 .
doi: 10.1093/genetics/126.3.735 |
5 |
Jeong N, Moon J K, Kim H S, et al. Fine genetic mapping of the genomic region controlling leaflet shape and number of seeds per pod in the soybean[J]. Theor Appl Genet, 2011, 122(5): 865-874. DOI:10.1007/s00122-010-1492-5 .
doi: 10.1007/s00122-010-1492-5 |
6 |
Jeong N, Suh S J, Kim M H, et al. Ln is a key regulator of leaflet shape and number of seeds per pod in soybean[J]. Plant Cell, 2012, 24(12): 4807-4818. DOI:10.1105/tpc.112.104968 .
doi: 10.1105/tpc.112.104968 |
7 |
Yang Z, Xin D, Liu C, et al. Identification of QTLs for seed and pod traits in soybean and analysis for additive effects and epistatic effects of QTLs among multiple environments[J]. Mol Genet Genom, 2013, 288(12): 651-667. DOI:10.1007/s00438-013-0779-z
doi: 10.1007/s00438-013-0779-z |
8 |
Wang X B, Li Y H, Zhang H W, et al. Evolution and association analysis of GmCYP78A10 gene with seed size/weight and pod number in soybean[J]. Mol Biol Rep, 2015, 42(2): 489-496. DOI:10.1007/s11033-014-3792-3 .
doi: 10.1007/s11033-014-3792-3 |
9 |
周蓉, 陈海峰, 王贤智, 等. 大豆产量和产量构成因子及倒伏性的QTL分析[J]. 作物学报, 2009, 35(5): 821-830. DOI:10.3724/SP.J.1006.2009.00821 .
doi: 10.3724/SP.J.1006.2009.00821 |
10 | 高静瑶, 刘春燕, 蒋洪蔚, 等. 多环境下大豆单株荚数性状的QTL分析[J]. 中国油料作物学报, 2012, 34(1): 1-7. |
11 |
梁慧珍, 余永亮, 杨红旗, 等. 不同环境下大豆荚粒性状的遗传与QTL分析[J]. 中国农业科学, 2012, 45(13): 2568-2579. DOI:10.3864/j.issn.0578-1752.2012.13.002 .
doi: 10.3864/j.issn.0578-1752.2012.13.002 |
12 | 杨喆, 孙亚男, 齐照明, 等. 大豆荚数性状相关QTL的加性、上位性及QE互作效应分析[J]. 中国农业大学学报, 2013, 18(3): 1-13. |
13 | 刘阳. 大豆重要农艺性状的QTL分析及qoilF-1的精细定位研究[D]. 哈尔滨: 东北农业大学, 2015. |
14 |
蒋洪蔚, 李灿东, 李瑞超, 等. 野生大豆ZYD00006回交导入系构建[J]. 中国油料作物学报, 2020, 42(1): 8-16. DOI:10.19802/j.issn.1007-9084.2020014 .
doi: 10.19802/j.issn.1007-9084.2020014 |
15 | 刘萃鹤. 小麦抗黑胚病遗传位点QBp .caas-3BL的精细定位[D]. 北京: 中国农业科学院, 2021. |
16 |
Nolan K E, Kurdyukov S, Rose R J. Expression of the somatic embryogenesis receptor-like kinase1 (serk1) gene is associated with developmental change in the life cycle of the model legume Medicago truncatula [J]. J Exp Bot, 2009, 60(6): 1759-1771. DOI:10.1093/jxb/erp046 .
doi: 10.1093/jxb/erp046 |
17 |
Pathak A K, Singh S P, Gupta Y, et al. Transcriptional changes during ovule development in two genotypes of Litchi (Litchi chinensis Sonn.) with contrast in seed size[J]. Sci Reports, 2016, 6: 36304. DOI:10.1038/srep36304 .
doi: 10.1038/srep36304 |
18 |
Lenser T, Graeber K, Cevik Ö S, et al. Developmental control and plasticity of fruit and seed dimorphism in Aethionema arabicum [J]. Plant Physiol, 2016, 172(3): 1691-1707. DOI:10.1104/pp.16.00838 .
doi: 10.1104/pp.16.00838 |
19 |
Robert H S, Park C, Gutièrrez C L, et al. Maternal auxin supply contributes to early embryo patterning in Arabidopsis [J]. Nat Plants, 2018, 4(8): 548-553. DOI:10.1038/s41477-018-0204-z .
doi: 10.1038/s41477-018-0204-z |
20 |
Liu Z H, Boachon B, Lugan R, et al. A conserved cytochrome P450 evolved in seed plants regulates flower maturation[J]. Mol Plant, 2015, 8(12): 1751-1765. DOI:10.1016/j.molp.2015.09.002 .
doi: 10.1016/j.molp.2015.09.002 |
21 |
Liew L C, Singh M B, Bhalla P L. Unique and conserved features of floral evocation in legumes[J]. J Integr Plant Biol, 2014, 56(8): 714-728. DOI:10.1111/jipb.12187 .
doi: 10.1111/jipb.12187 |
22 |
Kwak M, Velasco D, Gepts P. Mapping homologous sequences for determinacy and photoperiod sensitivity in common bean (Phaseolus vulgaris)[J]. J Hered, 2008, 99(3): 283-291. DOI:10.1093/jhered/esn005 .
doi: 10.1093/jhered/esn005 |
23 |
Xue Z G, Zhang X M, Lei C F, et al. Molecular cloning and functional analysis of one ZEITLUPE homolog GmZTL3 in soybean[J]. Mol Biol Rep, 2012, 39(2): 1411-1418. DOI:10.1007/s11033-011-0875-2 .
doi: 10.1007/s11033-011-0875-2 |
24 |
Tsuwamoto R, Yokoi S, Takahata Y. Arabidopsis EMBRYOMAKER encoding an AP2 domain transcription factor plays a key role in developmental change from vegetative to embryonic phase[J]. Plant Mol Biol, 2010, 73(4/5): 481-492. DOI:10.1007/s11103-010-9634-3 .
doi: 10.1007/s11103-010-9634-3 |
25 |
Radoeva T, Weijers D. A roadmap to embryo identity in plants[J]. Trends Plant Sci, 2014, 19(11): 709-716. DOI:10.1016/j.tplants.2014.06.009 .
doi: 10.1016/j.tplants.2014.06.009 |
26 | 郑成木. 植物分子标记原理与方法[M]. 长沙: 湖南科学技术出版社, 2003. |
27 |
吉康娜, 郅俊杰, 林丹妮, 等. 基于茄子基因组重测序的InDel标记开发及应用[J]. 植物遗传资源学报, 2019, 20(5): 1278-1288. DOI:10.13430/j.cnki.jpgr.20190130001 .
doi: 10.13430/j.cnki.jpgr.20190130001 |
28 |
张录霞, 甘中祥, 李倍金, 等. 利用InDel标记鉴定加工番茄杂交种纯度[J]. 分子植物育种, 2016, 14(6): 1533-1537. DOI:10.13271/j.mpb.014.001533 .
doi: 10.13271/j.mpb.014.001533 |
29 |
王钰, 马卉, 许学, 等. 水稻功能性插入缺失标记(InDel)的筛选与应用[J]. 作物杂志, 2019(4): 84-93. DOI:10.16035/j.issn.1001-7283.2019.04.013 .
doi: 10.16035/j.issn.1001-7283.2019.04.013 |
30 |
姚宗泽, 李阳, 郭宗娟, 等. 杂交玉米品种家佳荣2号种子纯度的InDel分子标记鉴定[J]. 江苏农业科学, 2020, 48(1): 79-84. DOI:10.15889/j.issn.1002-1302.2020.01.014 .
doi: 10.15889/j.issn.1002-1302.2020.01.014 |
31 |
陈正杰, 宛永璐, 钟文娟, 等. 基于大豆基因组重测序的InDel标记开发及应用[J]. 植物遗传资源学报, 2021, 22(3): 815-833. DOI:10.13430/j.cnki.jpgr.20201028003 .
doi: 10.13430/j.cnki.jpgr.20201028003 |
32 |
李灿东. 大豆油分分子标记功能验证及遗传分析[J]. 现代化农业, 2021(2): 2-5. DOI:10.3969/j.issn.1001-0254.2021.02.001 .
doi: 10.3969/j.issn.1001-0254.2021.02.001 |
33 | 吴海涛, 张勇, 苏伯鸿, 等. 大豆分枝数相关分子标记开发及qBN-18位点精细定位[J]. 作物学报, 2020, 46(11): 1667-1677. |
[1] | Chao-sen ZHAO, Xian-wei ZHAO, Rui-zhen WANG. Evolution of important agronomic traits of vegetable summer soybean varieties attending national regional test [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1218-1227. |
[2] | Bo WANG, Ying-ying DONG, Xue FU, He-yu LIU, Xiang-chao ZHANG, Ji LIU, Fei-fei SHI, Xue ZHAO, Ying-peng HAN, Wen-bin LI, Wei-li TENG. Construction of high density genetic map and QTL mapping of yield related traits in soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1228-1238. |
[3] | Wen-tian HU, Cai-jin WANG, Jing-hong DU, Yang WANG. Exploration of elite alleles on vigor-related traits in soybean at seed stage [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1249-1258. |
[4] | Ying ZHAI, Ting-ting MA, Jia-qi HE, Jun ZHANG, Ming-yang LI, Jiong-xin CHEN, Hai-wei YU, Shan-shan LI, Tian-guo SUN. Soybean GmDof2.2 improved the sensitivity of transgenic tobacco to salt stress [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1259-1266. |
[5] | Qing-wei FANG, Yan-zheng ZHANG, Ji-qiang ZHENG, Ze-yang LI, Yue LI, Jia-liang ZHAO, Xue-song WANG, Xing-chao CHANG, Long CHEN, Ya JING, Chun-xiao SONG, Yong-guang LI. Analysis of salt tolerance function of GmLecRlk gene in soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1267-1274. |
[6] | Xi-guo HAN, Bo YANG, De-bin YU, Chang-hong XU, Fan-gang MENG, Qiang QIU, Jing ZHAO, Ming-hao ZHANG, Xiao-yan YAN, Wei ZHANG. Response of yield and related traits of soybean varieties with different iron efficiency to Fe-EDDHA fertilizer in calcareous iron-deficient soils [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1329-1336. |
[7] | SACHURULA, BADUMUCAICIKE, Rui-lin TIAN, Zhan-ming HOU, Zhen-xing WANG. Effects of peanut, soybean and carrot as feed on development and adult survival of Dolycoris baccarum [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1337-1340. |
[8] | Yong-fang ZHANG, Ming-ming WANG, Li-hua ZHAO, Dong-xu ZHANG, Yong-fang JIA, Jian-min WANG, Ke-ying LI, Ling-xin CHEN. Comparison of nutrient composition changes of different soybean varieties during germination [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1368-1374. |
[9] | Su-qi JIAO, Jun-ming ZHOU, Yu-qing SHANG, Jia-xin WANG, Ai-jing ZHANG, Hao-bo HE, Qiu-zhu ZHAO, Yue LI, Dan YAO. Cloning and genetic transformation of soybean fatty acid dehydrogenase GmFAD3C-1 gene [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 1006-1017. |
[10] | Chun-juan YAN, Shu-hong SONG, Chang-ling WANG, Xu-gang SUN, Yong-qiang CAO, Li-jun ZHANG, Li ZHANG, Xiao-yang HUO, Wen-bin WANG. Effect of water stress in different phases on photosynthetic characteristics of drought-avoidant soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 1048-1056. |
[11] | Xian-xu WANG, Hui-ming FAN, Ran OU, Lei WANG, Sui WANG, Yan JIANG, Shao-dong WANG. Methylene blue and β-carotene double fading method in soybean breeding of lipoxygenase free [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 1123-1129. |
[12] | Shi-hua XIANG, Hao YANG, Hong-yan YANG, Hua-wei YANG, Lin YU, Ya-bin HAN, Qing-yuan HE. Identification and genome-wide association analysis for tolerance to acid aluminum using Sichuan and Chongqing soybean germplasm [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 981-988. |
[13] | Chao MA, Miao-xin GUO, Sheng-nan MA, Yue WANG, Yu-tian SUN, Da-wei XIN, Qing-shan CHEN, Jin-hui WANG. Construction of HH103ΩNopAAΩNopD and effect of mutation on nodulation ability of soybean rhizobium [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 989-995. |
[14] | Shuai LIANG, Qing-shan CHEN, Zi-kun ZHU, Dong-dong LI, Zhao-ming QI, Da-wei XIN. Identification and analysis of soybean DELLA gene family [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 996-1005. |
[15] | Yu-jin WU, Kai XU, Ju-rong SONG, Lun ZHAO, Jing WEN, Bin YI, Chao-zhi MA, Jin-xiong SHEN, Ting-dong FU, Jin-xing TU. Phenotypic identification and gene mapping of cotyledon yellowing lethality mutant ytl in Brassica napus [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 762-769. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||