CHINESE JOURNAL OF OIL CROP SCIENCES ›› 2022, Vol. 44 ›› Issue (6): 1329-1336.doi: 10.19802/j.issn.1007-9084.2021277
Previous Articles Next Articles
Xi-guo HAN1(), Bo YANG1, De-bin YU2, Chang-hong XU1, Fan-gang MENG2, Qiang QIU2, Jing ZHAO2, Ming-hao ZHANG2, Xiao-yan YAN2, Wei ZHANG2(
)
Received:
2021-12-07
Online:
2022-12-25
Published:
2022-11-24
Contact:
Wei ZHANG
E-mail:513349127@qq.com;zw.0431@163.com
CLC Number:
Xi-guo HAN, Bo YANG, De-bin YU, Chang-hong XU, Fan-gang MENG, Qiang QIU, Jing ZHAO, Ming-hao ZHANG, Xiao-yan YAN, Wei ZHANG. Response of yield and related traits of soybean varieties with different iron efficiency to Fe-EDDHA fertilizer in calcareous iron-deficient soils[J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1329-1336.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jouroilcrops.cn/EN/10.19802/j.issn.1007-9084.2021277
Table 1
Yield of soybean varieties with different iron efficiency at Taonan experimental station
品种类型 Variety type | 品种 Variety | 产量 Yield /(kg·667m-2) | |
---|---|---|---|
2014 | 2015 | ||
铁高效Iron-efficient | 吉育99 Jiyu 99 | 170.2 ± 11.9aA | 149.9 ± 5.9aA |
长农20 Changnong 20 | 170.2 ± 6.2aA | 140.9 ± 4.0aA | |
铁中效Medium iron-efficient | 九农36 Jiunong 36 | 148.5 ± 9.7bA | 88.8 ± 2.6bB |
吉育100 Jiyu 100 | 147.3 ± 5.3bA | 95.4 ± 6.0bB | |
铁低效Iron-inefficient | 吉育85 Jiyu 85 | 0.0 ± 0.0cB | 0.0 ± 0.0cC |
吉育93 Jiyu 93 | 0.0 ± 0.0cB | 0.0 ± 0.0cC |
Table 2
Variance analysis of SPAD values between different treatments at V3 and R2 stages in different years
变异来源 Source of variation | V3 | R2 | |||||||
---|---|---|---|---|---|---|---|---|---|
平方和 Sum of squares(SS) | 均方 Mean square (MS) | F值 F value | P值 P value | 平方和 Sum of squares(SS) | 均方 Mean square (MS) | F值 F value | P值 P value | ||
区组 Block | 12.7 | 2.5 | 26.4 | 5.3 | |||||
年份Year (Y) | 67.3 | 67.3 | 13.2 | 0.015 | 11.1 | 11.1 | 3.8 | 0.110 | |
误差Residual | 25.5 | 5.1 | 14.8 | 3.0 | |||||
品种Variety (V) | 2078.3 | 1039.1 | 93.7 | 0.000 | 5,428.4 | 2714.2 | 273.3 | 0.000 | |
年份×品种(Y×V) | 160.8 | 80.4 | 7.3 | 0.004 | 142.6 | 71.3 | 7.2 | 0.005 | |
误差Residual | 221.8 | 11.1 | 198.7 | 10.0 | |||||
铁肥处理Fe treatment(Fe) | 3526.4 | 705.3 | 112.5 | 0.000 | 5,159.5 | 1031.9 | 149.0 | 0.000 | |
年份×铁处理(Y×Fe) | 106.7 | 21.3 | 3.7 | 0.003 | 83.2 | 16.6 | 2.4 | 0.040 | |
品种×铁处理(V×Fe) | 1558.1 | 155.8 | 27.1 | 0.000 | 6,371.1 | 637.1 | 92.0 | 0.000 | |
年份×品种×铁处理(Y×V×Fe) | 358.3 | 35.8 | 6.2 | 0.000 | 326.4 | 32.6 | 4.7 | 0.000 | |
误差Residual | 863.8 | 5.8 | 1038.7 | 7.0 | |||||
总和 Total | 8979.7 | 18,800.9 |
Table 3
Effects of different iron chelating doses on agronomic traits of soybean varieties with different iron efficiency
年份Year | 品种 Varieties | Fe-EDDHA /(kg/ hm-2) | 株高 Plant height /cm | 单株荚重 Pods weight per plant /g | 单株粒重 Grain weight per plant /g | 百粒重 100-seed weight /g |
---|---|---|---|---|---|---|
2014 | 铁高效 Iron-efficient | 0 | 76.4±5.02aA | 9.2±0.97aA | 5.8±0.55aA | 17.2±1.02aA |
3 | 80.9±2.93aA | 9.1±0.87aA | 5.9±0.45aA | 17.4±0.96aA | ||
6 | 78.5±4.62aA | 9.3±1.33aA | 6.0±0.85aA | 17.1±1.51aA | ||
9 | 80.0±5.36aA | 8.8±1.10aA | 5.7±0.51aA | 17.6±1.47aA | ||
12 | 76.9±3.80aA | 9.4±0.76aA | 6.2±0.52aA | 17.0±1.59aA | ||
15 | 76.1±6.45aA | 9.1±0.79aA | 5.9±0.47aA | 16.8±1.89aA | ||
铁中效 Medium iron-efficient | 0 | 67.5±11.73bB | 7.0±0.66bB | 4.5±0.32bB | 17.2±1.20aA | |
3 | 87.0±2.29aA | 8.3±1.18aAB | 5.4±0.78aAB | 17.7±1.19aA | ||
6 | 90.8±6.75aA | 8.2±1.16aAB | 5.3±0.79aAB | 17.6±1.46aA | ||
9 | 89.3±4.74aA | 8.6±0.68aA | 5.7±0.36aA | 17.4±1.55aA | ||
12 | 86.8±6.76aA | 8.0±1.08aAB | 5.2±0.61aAB | 16.8±1.78aA | ||
15 | 88.3±6.61aA | 8.4±1.06aA | 5.6±0.67aA | 17.6±0.86aA | ||
铁低效 Iron-inefficient | 0 | 0.0±0.00dD | 0.0±0.00dD | 0.0±0.00dD | 0.0±0.00dC | |
3 | 55.4±8.99cC | 4.0±0.93cC | 2.6±0.57cC | 15.0±0.39cB | ||
6 | 69.2±7.67bB | 6.2±0.70bB | 4.0±0.52bB | 16.3±0.57abAB | ||
9 | 83.2±5.58aA | 7.9±0.92aA | 5.2±0.69aA | 17.0±0.30aA | ||
12 | 86.1±6.22aA | 8.5±0.64aA | 5.6±0.36aA | 16.5±0.95abA | ||
15 | 84.4±5.16aA | 8.1±0.48aA | 5.4±0.28aA | 16.8±1.06aA | ||
2015 | 铁高效 Iron-efficient | 0 | 70.3±6.77aA | 7.5±0.52bB | 4.8±0.39bB | 17.3±1.79aA |
3 | 72.4±3.87aA | 8.4±0.63aAB | 5.6±0.43aA | 17.0±1.77aA | ||
6 | 74.7±5.12aA | 8.4±0.47aA | 5.4±0.31aAB | 17.2±1.78aA | ||
9 | 70.9±6.90aA | 8.2±0.51aAB | 5.3±0.38aAB | 17.2±1.28aA | ||
12 | 73.2±2.94aA | 8.6±0.77aA | 5.5±0.48aA | 16.8±1.67aA | ||
15 | 72.6±2.47aA | 8.7±0.64aA | 5.7±0.40aA | 16.9±1.95aA | ||
铁中效 Medium iron-efficient | 0 | 69.0±6.58dC | 6.0±1.41dC | 3.8±0.86dD | 16.4±0.90bB | |
3 | 79.36±3.76cB | 6.8±1.10cBC | 4.2±0.63cCD | 17.3±1.04aAB | ||
6 | 86.8±3.19abA | 7.6±0.60bAB | 4.8±0.34bBC | 18.0±1.05aA | ||
9 | 89.6±3.13aA | 8.3±0.65aA | 5.3±0.43aAB | 18.0±0.97aA | ||
12 | 88.4±2.90abA | 8.5±0.87aA | 5.6±0.53aA | 18.4±1.22aA | ||
15 | 89.0±3.58abA | 8.4±0.79aA | 5.4±0.50aAB | 18.0±0.80aA | ||
铁低效 Iron-inefficient | 0 | 0.0±0.00eE | 0.00±0.00eE | 0.0±0.00eE | 0.0±0.00dC | |
3 | 55.3±6.80dD | 3.09±0.70dD | 1.9±0.45dD | 13.8±0.91cB | ||
6 | 68.3±6.91cC | 5.52±0.64cC | 3.4±0.38cC | 15.8±1.38bA | ||
9 | 77.1±4.34bB | 6.41±0.53bB | 4.1±0.29bB | 16.3±1.41abA | ||
12 | 88.4±4.26aA | 7.65±0.59aA | 4.8±0.33aA | 17.3±1.66aA | ||
15 | 86.7±3.83aA | 7.79±0.48aA | 4.9±0.30aA | 17.4±1.39aA |
Table 4
Variance analysis of yield between different treatments in different years
变异来源 Source of variation | 平方和 Sum of squares(SS) | 均方 Mean square (MS) | F值 F value | P值 P value |
---|---|---|---|---|
区组 Block | 1804.4 | 360.9 | ||
年份Year (Y) | 22444.7 | 22444.7 | 243.6 | 0.000 |
误差Residual | 460.6 | 92.1 | ||
品种Variety (V) | 172468.5 | 86234.2 | 5959.3 | 0.000 |
年份×品种(Y×V) | 2900.9 | 1450.5 | 100.2 | 0.000 |
误差Residual | 289.4 | 14.5 | ||
铁肥处理Fe treatment(Fe) | 105170.5 | 21034.1 | 691.7 | 0.000 |
年份×铁处理(Y×Fe) | 3101.6 | 620.3 | 20.4 | 0.000 |
品种×铁处理(V×Fe) | 91769.2 | 9176.9 | 301.8 | 0.000 |
年份×品种×铁处理(Y×V×Fe) | 8610.3 | 861.0 | 28.3 | 0.000 |
误差Residual | 4561.4 | 30.4 | ||
总和 Total | 413581.5 |
Table 5
The stepwise regression equation for seed weight per plant (Y) of soybean varieties with different iron efficiency
品种 Cultivar | 回归方程 Regression equation | 决定系数(R2 ) | P-值 P-value | 剩余标准差 (S) | Durbin-Watson 统计量(d) |
---|---|---|---|---|---|
铁高效 Iron-efficient | Y1 = 0.89 + 1.55 X4 | 0.73 | 0.0004 | 0.02 | 2.4 |
铁中效 Medium iron-efficient | Y2 = 1.88 + 0.11 X1 | 0.91 | 0 | 0.02 | 3.3 |
铁低效 Iron-inefficient | Y3 = - 0.05 + 1.83 X4 | 0.97 | 0 | 0.03 | 0.5 |
1 |
Atencio L, Salazar J, Moran Lauter A N, et al. Characterizing short and long term iron stress responses in iron deficiency tolerant and susceptible soybean (Glycine max L. Merr.)[J]. Plant Stress, 2021, 2: 100012. DOI:10.1016/j.stress.2021.100012 .
doi: 10.1016/j.stress.2021.100012 |
2 |
Assefa T, Zhang J P, Chowda-Reddy R V, et al. Deconstructing the genetic architecture of iron deficiency chlorosis in soybean using genome-wide approaches[J]. BMC Plant Biol, 2020, 20(1): 42. DOI:10.1186/s12870-020-2237-5 .
doi: 10.1186/s12870-020-2237-5 |
3 | Hashemimajd K, Golchin A. The effect of iron-enriched vermicompost on growth and nutrition of tomato[J]. J Agric Sci Technol, 2009, 11(5): 613-621. |
4 |
张伟, 赵婧, 邱强, 等. 石灰性土壤上大豆耐低铁品种的鉴定指标研究[J]. 大豆科学, 2016, 35(5): 760-765. DOI:10.11861/j.issn.1000-9841.2016.05.0760 .
doi: 10.11861/j.issn.1000-9841.2016.05.0760 |
5 |
Hansen N C, Schmitt M A, Anderson J E, et al. Iron deficiency of soybean in the upper Midwest and associated soil properties[J]. Agron J, 2003, 95(6): 1595-1601. DOI:10.2134/agronj2003.1595 .
doi: 10.2134/agronj2003.1595 |
6 |
Gamble A V, Howe J A, Delaney D, et al. Iron chelates alleviate iron chlorosis in soybean on high pH soils[J]. Agron J, 2014, 106(4): 1251-1257. DOI:10.2134/agronj13.0474 .
doi: 10.2134/agronj13.0474 |
7 |
Kaiser B N, Moreau S, Castelli J, et al. The soybean NRAMP homologue, GmDMT1, is a symbiotic divalent metal transporter capable of ferrous iron transport[J]. Plant J, 2003, 35(3): 295-304. DOI:10.1046/j.1365-313x.2003.01802.x .
doi: 10.1046/j.1365-313x.2003.01802.x |
8 |
Liesch A M, Diaz D A R, Martin K L, et al. Management strategies for increasing soybean yield on soils susceptible to iron deficiency[J]. Agron J, 2011, 103(6): 1870-1877. DOI:10.2134/agronj2011.0191 .
doi: 10.2134/agronj2011.0191 |
9 |
Àlvarez-Fernàndez A, Abadía J, Abadía A. Iron deficiency, fruit yield and fruit quality[M]//Iron Nutrition in Plants and Rhizospheric Microorganisms. Dordrecht: Springer Netherlands, 2006: 85-101. DOI:10.1007/1-4020-4743-6_4 .
doi: 10.1007/1-4020-4743-6_4 |
10 | Schenkeveld W D C, Temminghoff E J M. The Effectiveness of FeEDDHA Chelates in Mending and Preventing Iron Chlorosis in Soil-Grown Soybean Plants[M].Soybean Physiology and Biochemistry, Prof.Hany El-Shemy (Ed.), ISBN: 978- 953-307-534-1, InTech, Available from: . |
11 |
Helms T C, Scott R A, Schapaugh W T, et al. Soybean iron-deficiency chlorosis tolerance and yield decrease on calcareous soils[J]. Agron J, 2010, 102(2): 492-498. DOI:10.2134/agronj2009.0317 .
doi: 10.2134/agronj2009.0317 |
12 |
Godsey C B, Schmidt J P, Schlegel A J, et al. Correcting iron deficiency in corn with seed row-applied iron sulfate[J]. Agron J, 2003, 95(1): 160. DOI:10.2134/agronj2003.0160 .
doi: 10.2134/agronj2003.0160 |
13 |
Hergert G W, Nordquist P T, Petersen J L, et al. Fertilizer and crop management practices for improving maize yields on high pH soils[J]. J Plant Nutr, 1996, 19(8/9): 1223-1233. DOI:10.1080/01904169609365193 .
doi: 10.1080/01904169609365193 |
14 |
Wiersma J V. High rates of Fe-EDDHA and seed iron concentration suggest partial solutions to iron deficiency in soybean[J]. Agron J, 2005, 97(3): 924-934. DOI:10.2134/agronj2004.0309 .
doi: 10.2134/agronj2004.0309 |
15 |
Goos R J, Johnson B. Seed treatment, seeding rate, and cultivar effects on iron deficiency chlorosis of soybean[J]. J Plant Nutr, 2001, 24(8): 1255-1268. DOI:10.1081/pln-100106980 .
doi: 10.1081/pln-100106980 |
16 |
Modaihsh A S. Foliar application of chelated and non-chelated metals for supplying micronutrients to wheat grown on calcareous soil[J]. Ex Agric, 1997, 33(2): 237-245. DOI:10.1017/s001447979700001x .
doi: 10.1017/s001447979700001x |
17 |
Wiersma J V. Iron acquisition of three soybean varieties grown at five seeding densities and five rates of Fe-EDDHA[J]. Agron J, 2007, 99(4): 1018-1028. DOI:10.2134/agronj2006.0271 .
doi: 10.2134/agronj2006.0271 |
18 |
O'Rourke J A, Charlson D V, Gonzalez D O, et al. Microarray analysis of iron deficiency chlorosis in near-isogenic soybean lines[J]. BMC Genom, 2007, 8: 476. DOI:10.1186/1471-2164-8-476 .
doi: 10.1186/1471-2164-8-476 |
19 | Kaiser D E, Lamb J A, Bloom P R. 2011. Managing iron deficiency chlorosis in soybean[M]. Publ. AG-FO-08672-A. Univ. of MN Ext., St. Paul. |
20 |
Goos R J, Johnson B E. A comparison of three methods for reducing iron-deficiency chlorosis in soybean[J]. Agron J, 2000, 92(6): 1135-1139. DOI:10.2134/agronj2000.9261135x .
doi: 10.2134/agronj2000.9261135x |
21 |
de Kreij C. Exchange of iron from chelate in the fertilizer against copper, manganese, and zinc in peaty substrates[J]. Commun Soil Sci Plant Anal, 1998, 29(11/12/13/14): 1897-1902. DOI:10.1080/00103629809370079 .
doi: 10.1080/00103629809370079 |
22 | Tills A R. Chelates in horticulture[J]. Prof Hortic, 1987, 1(4): 120-125. |
23 | Reed D W, 1996. Micronutrient nutrition. In: REED D.W.(ed.), Water, Media, and Nutrition for Greenhouse Crops[M]. Batavia, Ball Publishing: 171-195. |
24 |
张伟, 赵丽梅, 韩喜国, 等. 吉林省白城地区大豆黄叶原因分析[J]. 河南农业科学, 2011, 40(11): 57-59. DOI:10.3969/j.issn.1004-3268.2011.11.015 .
doi: 10.3969/j.issn.1004-3268.2011.11.015 |
25 | 张伟, 赵丽梅, 韩喜国, 等. 石灰性土壤大豆缺铁矫正[J]. 大豆科学, 2011, 30(3): 463-467. |
26 | 张 伟,邱 强,赵 婧,等.石灰性土壤上大豆耐低铁品种的鉴定指标研究[J]. 大豆科学,2016,41(4):8-13. |
27 |
Chen J, Shang Y T, Zhang N N, et al. Sodium hydrosulfide modifies the nutrient ratios of soybean (Glycine max) under iron deficiency[J]. J Plant Nutr Soil Sci, 2018, 181(2): 305-315. DOI:10.1002/jpln.201700262 .
doi: 10.1002/jpln.201700262 |
28 |
赵婧, 邱强, 张鸣浩, 等. 大豆在不同铁水平下生理特性与品种耐性的关系[J]. 核农学报, 2016, 30(11): 2239-2247. DOI:10.11869/j.issn.100-8551.2016.11.2239 .
doi: 10.11869/j.issn.100-8551.2016.11.2239 |
29 |
Xu Z Y, Kurek A, Cannon S B, et al. Predictions from algorithmic modeling result in better decisions than from data modeling for soybean iron deficiency chlorosis[J]. PLoS One, 2021, 16(7): e0240948. DOI:10.1371/journal.pone.0240948 .
doi: 10.1371/journal.pone.0240948 |
30 |
Zuo Y, Ren L, Zhang F, et al. Bicarbonate concentration as affected by soil water content controls iron nutrition of peanut plants in a calcareous soil[J]. Plant Physiol Biochem, 2007, 45(5): 357-364. DOI:10.1016/j.plaphy.2007.03.017 .
doi: 10.1016/j.plaphy.2007.03.017 |
[1] | Jing-xiu YE, Hai-dong LIU, Xiao-rong XING, Jun LI, De-zhi DU. Relationship between chlorophyll content and yield and development of chlorophyll major QTL cqSPDA2 linkage marker in Brassica napus [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1173-1181. |
[2] | Chao-sen ZHAO, Xian-wei ZHAO, Rui-zhen WANG. Evolution of important agronomic traits of vegetable summer soybean varieties attending national regional test [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1218-1227. |
[3] | Bo WANG, Ying-ying DONG, Xue FU, He-yu LIU, Xiang-chao ZHANG, Ji LIU, Fei-fei SHI, Xue ZHAO, Ying-peng HAN, Wen-bin LI, Wei-li TENG. Construction of high density genetic map and QTL mapping of yield related traits in soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1228-1238. |
[4] | Li-long HOU, Hong-wei JIANG, Xin XIONG, Hai-yang ZHENG, Fu-bin CAO, Ru-ru WEI, Yi-chao ZHANG, Yu-xuan ZHAO, Meng-yao GUO, Qing-shan CHEN. Development and verification of molecular markers for QTLs related to the number of three-seeded pods in soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1239-1248. |
[5] | Wen-tian HU, Cai-jin WANG, Jing-hong DU, Yang WANG. Exploration of elite alleles on vigor-related traits in soybean at seed stage [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1249-1258. |
[6] | Ying ZHAI, Ting-ting MA, Jia-qi HE, Jun ZHANG, Ming-yang LI, Jiong-xin CHEN, Hai-wei YU, Shan-shan LI, Tian-guo SUN. Soybean GmDof2.2 improved the sensitivity of transgenic tobacco to salt stress [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1259-1266. |
[7] | Qing-wei FANG, Yan-zheng ZHANG, Ji-qiang ZHENG, Ze-yang LI, Yue LI, Jia-liang ZHAO, Xue-song WANG, Xing-chao CHANG, Long CHEN, Ya JING, Chun-xiao SONG, Yong-guang LI. Analysis of salt tolerance function of GmLecRlk gene in soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1267-1274. |
[8] | SACHURULA, BADUMUCAICIKE, Rui-lin TIAN, Zhan-ming HOU, Zhen-xing WANG. Effects of peanut, soybean and carrot as feed on development and adult survival of Dolycoris baccarum [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1337-1340. |
[9] | Yong-fang ZHANG, Ming-ming WANG, Li-hua ZHAO, Dong-xu ZHANG, Yong-fang JIA, Jian-min WANG, Ke-ying LI, Ling-xin CHEN. Comparison of nutrient composition changes of different soybean varieties during germination [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1368-1374. |
[10] | Su-qi JIAO, Jun-ming ZHOU, Yu-qing SHANG, Jia-xin WANG, Ai-jing ZHANG, Hao-bo HE, Qiu-zhu ZHAO, Yue LI, Dan YAO. Cloning and genetic transformation of soybean fatty acid dehydrogenase GmFAD3C-1 gene [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 1006-1017. |
[11] | Chun-juan YAN, Shu-hong SONG, Chang-ling WANG, Xu-gang SUN, Yong-qiang CAO, Li-jun ZHANG, Li ZHANG, Xiao-yang HUO, Wen-bin WANG. Effect of water stress in different phases on photosynthetic characteristics of drought-avoidant soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 1048-1056. |
[12] | Xian-xu WANG, Hui-ming FAN, Ran OU, Lei WANG, Sui WANG, Yan JIANG, Shao-dong WANG. Methylene blue and β-carotene double fading method in soybean breeding of lipoxygenase free [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 1123-1129. |
[13] | Cheng CUI, Hao-jie LI, Jin-fang ZHANG, Ben-chuan ZHENG, Liang CHAI, Jun JIANG, Ka ZHANG, Hai-yan QIN, Zai-yun LI, Liang-cai JIANG. Preliminary study on Songyou 2 for oilseeds and cruciferous vegetable [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 973-980. |
[14] | Shi-hua XIANG, Hao YANG, Hong-yan YANG, Hua-wei YANG, Lin YU, Ya-bin HAN, Qing-yuan HE. Identification and genome-wide association analysis for tolerance to acid aluminum using Sichuan and Chongqing soybean germplasm [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 981-988. |
[15] | Chao MA, Miao-xin GUO, Sheng-nan MA, Yue WANG, Yu-tian SUN, Da-wei XIN, Qing-shan CHEN, Jin-hui WANG. Construction of HH103ΩNopAAΩNopD and effect of mutation on nodulation ability of soybean rhizobium [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 989-995. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||