CHINESE JOURNAL OF OIL CROP SCIENCES ›› 2022, Vol. 44 ›› Issue (6): 1307-1319.doi: 10.19802/j.issn.1007-9084.2021282
Previous Articles Next Articles
Rui-qing WANG(), Zhi-hua ZHANG, Feng-juan LYU, Hong-xin LIN, Lin-gen WEI(
), Yun-ping XIAO(
)
Received:
2021-11-05
Online:
2022-12-25
Published:
2022-11-24
Contact:
Lin-gen WEI,Yun-ping XIAO
E-mail:andywang111@163.com;lgw0021@163.com;xyp-801@163.com
CLC Number:
Rui-qing WANG, Zhi-hua ZHANG, Feng-juan LYU, Hong-xin LIN, Lin-gen WEI, Yun-ping XIAO. Impact analysis of nitrogen fertilizer reduction on bacterial community structure and function in rhizosphere soil of continuous cropping sesame[J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1307-1319.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jouroilcrops.cn/EN/10.19802/j.issn.1007-9084.2021282
Table 1
Significance test of community structure difference between different treatments (Adonis analysis)
处理 Treatment | 自由度 Df | 总方差 Sums Of Sqs | 均方差 Mean Sqs | F检验值 F.Model | 决定系数 R2 | Pr(>F) |
---|---|---|---|---|---|---|
RSD-RSH | 1(28) | 0.177(1.835) | 0.177(0.066) | 2.697 | 0.088(0.912) | 0.002 |
RSN2-RSN4 | 1(10) | 0.098(0.724) | 0.098(0.072) | 1.354 | 0.119(0.881) | 0.157 |
RSN2-RSN0 | 1(10) | 0.048(0.678) | 0.048(0.068) | 0.707 | 0.066(0.934) | 0.832 |
RSN2-RSN1 | 1(10) | 0.063(0.676) | 0.063(0.068) | 0.934 | 0.085(0.915) | 0.527 |
RSN2-RSN3 | 1(10) | 0.133(0.543) | 0.133(0.054) | 2.442 | 0.196(0.804) | 0.017 |
RSN4-RSN0 | 1(10) | 0.088(0.776) | 0.088(0.078) | 1.139 | 0.102(0.898) | 0.316 |
RSN4-RSN1 | 1(10) | 0.057(0.774) | 0.057(0.077) | 0.734 | 0.068(0.932) | 0.702 |
RSN4-RSN3 | 1(10) | 0.062(0.641) | 0.062(0.064) | 0.961 | 0.088(0.913) | 0.496 |
RSN0-RSN1 | 1(10) | 0.072(0.728) | 0.072(0.073) | 0.995 | 0.091(0.910) | 0.428 |
RSN0-RSN3 | 1(10) | 0.115(0.595) | 0.115(0.059) | 1.936 | 0.162(0.838) | 0.011 |
RSN1-RSN3 | 1(10) | 0.086(0.593) | 0.086(0.059) | 1.446 | 0.126(0.874) | 0.136 |
Table 2
Effects of nitrogen reduction on bacterial community function in rhizosphere soil of continuous cropping sesame /%
功能 Function | 生长状态 Growth state | 减氮处理 Nitrogen reduction | RS | RSN | RS×RSN | |||||
---|---|---|---|---|---|---|---|---|---|---|
RSD | RSH | RSN0 | RSN1 | RSN2 | RSN3 | RSN4 | ||||
碳水化合物代谢Carbohydrate_metabolism | 10.65b | 10.75a | 10.66 | 10.74 | 10.66 | 10.68 | 10.77 | * | ns | ns |
膜运输Membrane_transport | 9.72a | 9.49b | 9.66 | 9.59 | 9.55 | 9.69 | 9.55 | ** | ns | ns |
氨基酸代谢Amino_acid_metabolism | 9.87 | 9.79 | 9.89ab | 9.89ab | 9.90a | 9.74ab | 9.74b | ns | ns | ns |
脂质代谢Lipid_metabolism | 4.17 | 4.11 | 4.20ab | 4.27a | 4.16abc | 4.01c | 4.08bc | ns | ns | ns |
折叠、分类和降级Folding,_sorting_and_degradation | 2.88 | 2.86 | 2.97a | 2.89ab | 2.92ab | 2.74b | 2.84ab | ns | ns | ns |
异源生物降解和代谢 Xenobiotics_biodegradation_and_metabolism | 2.33 | 2.25 | 2.34ab | 2.38a | 2.31ab | 2.21b | 2.23ab | ns | ns | ns |
其他氨基酸的代谢Metabolism_of_other_amino_acids | 1.87 | 1.86 | 1.87ab | 1.89a | 1.86b | 1.86b | 1.86b | ns | ns | ns |
新陈代谢Metabolism | 1.81 | 1.79 | 1.82ab | 1.83a | 1.8ab | 1.78b | 1.78b | ns | ns | ns |
翻译Translation | 8.55 | 8.56 | 8.73a | 8.54ab | 8.67ab | 8.34b | 8.50ab | ns | ns | ns |
辅助因子和维生素的代谢 Metabolism_of_cofactors_and_vitamins | 3.40 | 3.44 | 3.38b | 3.41ab | 3.43ab | 3.44a | 3.44a | ns | ns | ns |
核苷酸代谢Nucleotide_metabolism | 3.07 | 3.09 | 3.03b | 3.04ab | 3.07ab | 3.14a | 3.11ab | ns | ns | ns |
细胞运动Cell_motility | 2.08 | 2.09 | 2.08ab | 2.04b | 2.07b | 2.15a | 2.10ab | ns | ns | ns |
转录Transcription | 1.76 | 1.76 | 1.75 | 1.75 | 1.75 | 1.76 | 1.77 | ns | ns | ns |
细胞群落原核生物Cellular_community_prokaryotes | 2.21 | 2.16 | 2.23 | 2.18 | 2.19 | 2.16 | 2.16 | ns | ns | ns |
复制和修复Replication_and_repair | 7.14 | 7.19 | 7.07 | 7.10 | 7.15 | 7.28 | 7.21 | ns | ns | ns |
能量代谢Energy_metabolism | 4.62 | 4.67 | 4.59 | 4.62 | 4.66 | 4.68 | 4.67 | ns | ns | ns |
信号转导Signal_transduction | 3.71 | 3.76 | 3.70 | 3.70 | 3.71 | 3.81 | 3.77 | ns | ns | ns |
酶家族Enzyme_families | 2.74 | 2.83 | 2.74 | 2.75 | 2.77 | 2.85 | 2.83 | ns | ns | ns |
聚糖生物合成和代谢 Glycan_biosynthesis_and_metabolism | 2.67 | 2.73 | 2.62 | 2.64 | 2.65 | 2.82 | 2.79 | ns | ns | ns |
运输和分解代谢Transport_and_catabolism | 2.28 | 2.30 | 2.27 | 2.27 | 2.29 | 2.31 | 2.31 | ns | ns | ns |
1 |
Wu J P, Jiao Z B, Zhou J, et al. Analysis of bacterial communities in rhizosphere soil of continuously cropped healthy and diseased konjac[J]. World J Microbiol Biotechnol, 2017, 33(7): 134. DOI:10.1007/s11274-017-2287-5 .
doi: 10.1007/s11274-017-2287-5 |
2 |
Zhang S T, Jiang Q P, Liu X J, et al. Plant growth promoting rhizobacteria alleviate aluminum toxicity and ginger bacterial wilt in acidic continuous cropping soil[J]. Front Microbiol, 2020, 11: 569512. DOI:10.3389/fmicb.2020.569512 .
doi: 10.3389/fmicb.2020.569512 |
3 |
Li M, Yang F Z, Wu X Y, et al. Effects of continuous cropping of sugar beet (Beta vulgaris L.) on its endophytic and soil bacterial community by high-throughput sequencing[J]. Ann Microbiol, 2020, 70: 39. DOI:10.1186/s13213-020-01583-8 .
doi: 10.1186/s13213-020-01583-8 |
4 |
Wang T T, Hao Y W, Zhu M Z, et al. Characterizing differences in microbial community composition and function between Fusarium wilt diseased and healthy soils under watermelon cultivation[J]. Plant Soil, 2019, 438(1/2): 421-433. DOI:10.1007/s11104-019-04037-6 .
doi: 10.1007/s11104-019-04037-6 |
5 |
Wang R Q, Xiao Y P, Lv F J, et al. Bacterial community structure and functional potential of rhizosphere soils as influenced by nitrogen addition and bacterial wilt disease under continuous sesame cropping[J]. Appl Soil Ecol, 2018, 125: 117-127. DOI:10.1016/j.apsoil.2017.12.014 .
doi: 10.1016/j.apsoil.2017.12.014 |
6 |
Wu Z X, Hao Z P, Zeng Y, et al. Molecular characterization of microbial communities in the rhizosphere soils and roots of diseased and healthy Panax notoginseng [J]. Antonie Van Leeuwenhoek, 2015, 108(5): 1059-1074. DOI:10.1007/s10482-015-0560-x .
doi: 10.1007/s10482-015-0560-x |
7 |
Yao X Y, Huang K, Zhao S Y, et al. Identification and verification of rhizosphere indicator microorganisms in tobacco root rot[J]. Agron J, 2021, 113(2): 1480-1491. DOI:10.1002/agj2.20547 .
doi: 10.1002/agj2.20547 |
8 |
Li J G, Ren G D, Jia Z J, et al. Composition and activity of rhizosphere microbial communities associated with healthy and diseased greenhouse tomatoes[J]. Plant Soil, 2014, 380(1/2): 337-347. DOI:10.1007/s11104-014-2097-6 .
doi: 10.1007/s11104-014-2097-6 |
9 |
Wang Y Z, Zhu S Y, Liu T M, et al. Identification of the rhizospheric microbe and metabolites that led by the continuous cropping of ramie (Boehmeria nivea L. Gaud)[J]. Sci Rep, 2020, 10(1): 20408. DOI:10.1038/s41598-020-77475-3 .
doi: 10.1038/s41598-020-77475-3 |
10 |
Li F, Chen L, Zhang J B, et al. Bacterial community structure after long-term organic and inorganic fertilization reveals important associations between soil nutrients and specific taxa involved in nutrient transformations[J]. Front Microbiol, 2017, 8: 187. DOI:10.3389/fmicb.2017.00187 .
doi: 10.3389/fmicb.2017.00187 |
11 |
Zhang M L, Zhang X, Zhang L Y, et al. The stronger impact of inorganic nitrogen fertilization on soil bacterial community than organic fertilization in short-term condition[J]. Geoderma, 2021, 382: 114752. DOI:10.1016/j.geoderma.2020.114752 .
doi: 10.1016/j.geoderma.2020.114752 |
12 |
向芬, 李维, 刘红艳, 等. 氮肥减施对茶园土壤细菌群落结构的影响研究[J]. 生物技术通报, 2021, 37(6): 49-57. DOI:10.13560/j.cnki.biotech.bull.1985.2020-1287 .
doi: 10.13560/j.cnki.biotech.bull.1985.2020-1287 |
13 |
吴海宁, 黄志鹏, 唐秀梅, 等. 氮肥减施对花生根际土壤固氮微生物多样性的影响[J]. 江苏农业科学, 2019, 47(16): 93-97. DOI:10.15889/j.issn.1002-1302.2019.16.019 .
doi: 10.15889/j.issn.1002-1302.2019.16.019 |
14 |
Kavamura V N, Hayat R, Clark I M, et al. Inorganic nitrogen application affects both taxonomical and predicted functional structure of wheat rhizosphere bacterial communities[J]. Front Microbiol, 2018, 9: 1074. DOI:10.3389/fmicb.2018.01074 .
doi: 10.3389/fmicb.2018.01074 |
15 |
Nguyen L T T, Osanai Y, Lai K T, et al. Responses of the soil microbial community to nitrogen fertilizer regimes and historical exposure to extreme weather events: flooding or prolonged-drought[J]. Soil Biol Biochem, 2018, 118: 227-236. DOI:10.1016/j.soilbio.2017.12.016 .
doi: 10.1016/j.soilbio.2017.12.016 |
16 |
华菊玲, 刘光荣, 黄劲松. 连作对芝麻根际土壤微生物群落的影响[J]. 生态学报, 2012, 32(9): 2936-2942. DOI:10.5846/stxb201104010422 .
doi: 10.5846/stxb201104010422 |
17 |
李信申, 黄小梅, 魏林根, 等. 芝麻青枯病发生特点及药剂防治技术[J]. 中国油料作物学报, 2019, 41(6): 932-937. DOI:10.19802/j.issn.1007-9084.2019040 .
doi: 10.19802/j.issn.1007-9084.2019040 |
18 |
Shang Q H, Yang G, Wang Y, et al. Illumina-based analysis of the rhizosphere microbial communities associated with healthy and wilted Lanzhou lily (Lilium davidii var. unicolor) plants grown in the field[J]. World J Microbiol Biotechnol, 2016, 32(6): 95. DOI:10.1007/s11274-016-2051-2 .
doi: 10.1007/s11274-016-2051-2 |
19 |
Fan M C, Li J J, Yan W M, et al. Shifts in the structure and function of wheat root-associated bacterial communities in response to long-term nitrogen addition in an agricultural ecosystem[J]. Appl Soil Ecol, 2021, 159: 103852. DOI:10.1016/j.apsoil.2020.103852 .
doi: 10.1016/j.apsoil.2020.103852 |
20 |
Dorr de Quadros P, Zhalnina K, Davis-Richardson A, et al. The effect of tillage system and crop rotation on soil microbial diversity and composition in a subtropical acrisol[J]. Diversity, 2012, 4(4): 375-395. DOI:10.3390/d4040375 .
doi: 10.3390/d4040375 |
21 |
Fierer N, Lauber C L, Ramirez K S, et al. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients[J]. ISME J, 2012, 6(5): 1007-1017. DOI:10.1038/ismej.2011.159 .
doi: 10.1038/ismej.2011.159 |
22 |
Li J G, Shen M C, Hou J F, et al. Effect of different levels of nitrogen on rhizosphere bacterial community structure in intensive monoculture of greenhouse lettuce[J]. Sci Rep, 2016, 6: 25305. DOI:10.1038/srep25305 .
doi: 10.1038/srep25305 |
23 |
Berendsen R L, Pieterse C M J, Bakker P A H M. The rhizosphere microbiome and plant health[J]. Trends Plant Sci, 2012, 17(8): 478-486. DOI:10.1016/j.tplants.2012.04.001 .
doi: 10.1016/j.tplants.2012.04.001 |
24 |
Ramirez K S, Craine J M, Fierer N. Consistent effects of nitrogen amendments on soil microbial communities and processes across biomes[J]. Glob Change Biol, 2012, 18(6): 1918-1927. DOI:10.1111/j.1365-2486.2012.02639.x .
doi: 10.1111/j.1365-2486.2012.02639.x |
25 | 闵航. 微生物学[M]. 杭州: 浙江大学出版社, 2011. |
26 |
García-López M, Meier-Kolthoff J P, Tindall B J, et al. Analysis of 1,000 type-strain genomes improves taxonomic classification of bacteroidetes[J]. Front Microbiol, 2019, 10: 2083. DOI:10.3389/fmicb.2019.02083 .
doi: 10.3389/fmicb.2019.02083 |
27 |
Feng D L, Wu Z C, Xu S H. Nitrification of human urine for its stabilization and nutrient recycling[J]. Bioresour Technol, 2008, 99(14): 6299-6304. DOI:10.1016/j.biortech.2007.12.007 .
doi: 10.1016/j.biortech.2007.12.007 |
28 |
张晓冰, 杨星勇, 杨永柱, 等. 芽孢杆菌促进植物生长机制研究进展[J]. 江苏农业科学, 2020, 48(3): 73-80. DOI:10.15889/j.issn.1002-1302.2020.03.012 .
doi: 10.15889/j.issn.1002-1302.2020.03.012 |
29 |
杨恩东, 崔丹曦, 汪维云. 马赛菌属细菌研究进展[J]. 微生物学通报, 2019, 46(6): 1537-1548. DOI:10.13344/j.microbiol.china.180573 .
doi: 10.13344/j.microbiol.china.180573 |
30 |
Zeng Y H, Selyanin V, Lukeš M, et al. Characterization of the microaerophilic, bacteriochlorophyll a-containing bacterium Gemmatimonas phototrophica sp. nov., and emended descriptions of the genus Gemmatimonas and Gemmatimonas aurantiaca [J]. Int J Syst Evol Microbiol, 2015, 65(8): 2410-2419. DOI:10.1099/ijs.0.000272 .
doi: 10.1099/ijs.0.000272 |
31 |
Ash C, Priest F G, Collins M D. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test[J]. Antonie Van Leeuwenhoek, 1993, 64(3/4): 253-260. DOI:10.1007/BF00873085 .
doi: 10.1007/BF00873085 |
32 |
Fierer N, Bradford M A, Jackson R B. Toward an ecological classification of soil bacteria[J]. Ecology, 2007, 88(6): 1354-1364. DOI:10.1890/05-1839 .
doi: 10.1890/05-1839 |
33 |
Li X G, Ding C F, Hua K, et al. Soil sickness of peanuts is attributable to modifications in soil microbes induced by peanut root exudates rather than to direct allelopathy[J]. Soil Biol Biochem, 2014, 78: 149-159. DOI:10.1016/j.soilbio.2014.07.019 .
doi: 10.1016/j.soilbio.2014.07.019 |
34 |
Ward N L, Challacombe J F, Janssen P H, et al. Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils[J]. Appl Environ Microbiol, 2009, 75(7): 2046-2056. DOI:10.1128/AEM.02294-08 .
doi: 10.1128/AEM.02294-08 |
35 | 杜思瑶,于淼,刘芳华,等 .设施种植模式对土壤细菌多样性及群落结构的影响[J].中国生态农业学报,2017,25(11):1615 - 1625. |
36 |
Langille M G I, Zaneveld J, Caporaso J G, et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nat Biotechnol, 2013, 31(9): 814-821. DOI:10.1038/nbt.2676 .
doi: 10.1038/nbt.2676 |
37 |
Wu Z X, Hao Z P, Sun Y Q, et al. Comparison on the structure and function of the rhizosphere microbial community between healthy and root-rot Panax notoginseng [J]. Appl Soil Ecol, 2016, 107: 99-107. DOI:10.1016/j.apsoil.2016.05.017 .
doi: 10.1016/j.apsoil.2016.05.017 |
[1] | XU Yang, ZHANG Guan-chu, DING Hong, ZHANG Zhi-meng, CI Dun-wei, GUO Feng, DAI Liang-xiang. Response of rhizosphere bacterial community structure associated with peanut (Arachis hypogaea L.) to high salinity and drought stress [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2020, 42(6): 985-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||