CHINESE JOURNAL OF OIL CROP SCIENCES ›› 2022, Vol. 44 ›› Issue (6): 1296-1306.doi: 10.19802/j.issn.1007-9084.2021283
Previous Articles Next Articles
Qi-qi DONG1(), Yang YUAN1, Qi DU2, Zhen-hua LIU1, Xiao-long SHI1, Ke-zhao ZHANG1, Dong-ying ZHOU1, Xu YANG1, Xiao-guang WANG1, Chun-ji JIANG1, Xi-bo LIU1, Feng GUO3, Xin-hua ZHAO1(
), Hai-qiu YU1(
)
Received:
2021-11-03
Online:
2022-12-25
Published:
2022-11-24
Contact:
Xin-hua ZHAO,Hai-qiu YU
E-mail:QiqiDong77_syau@163.com;xinhua_zhao@syau.edu.cn;yuhaiqiu@syau.edu.cn;xinhua_zhao@syau.edu.cn
CLC Number:
Qi-qi DONG, Yang YUAN, Qi DU, Zhen-hua LIU, Xiao-long SHI, Ke-zhao ZHANG, Dong-ying ZHOU, Xu YANG, Xiao-guang WANG, Chun-ji JIANG, Xi-bo LIU, Feng GUO, Xin-hua ZHAO, Hai-qiu YU. Effects of strip intercropping of maize and peanut on nitrogen uptake and soil microbial community diversity[J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1296-1306.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jouroilcrops.cn/EN/10.19802/j.issn.1007-9084.2021283
Fig. 1
Plant and soil sampling locations for different planting patternsNote: A: Sole maize; B: Sole peanut; C: Intercropping of maize and peanut. : Plants sampled area; : Rhizosphere soil sampled points; SM: sole maize; SP: sole peanut; SIM: the shared soil of sole maize; SIP: the shared soil of sole peanut; IM: intercropped maize; IP: intercropped peanut; II: the sharedsoil of intercropped maize and peanut; MIM: the middle of intercropped maize; MIP: the middle of intercropped peanut
Table 1
Dry matter weight of maize and peanut under different planting patterns (g?plant-1)
出苗后天数 After seedling emergence/d | 样品 Sample | 地下部 Underground Dry Matter Weight | 地上部 Aboveground Dry Matter Weight | 总干物质积累 Total Dry Matter Weight | |||||
---|---|---|---|---|---|---|---|---|---|
2018 | 2019 | 2018 | 2019 | 2018 | 2019 | ||||
65 d | SM | 55.80±8.40ab | 50.73±12.48ab | 217.27±13.67ab | 193.72±43.32a | 273.07±11.85b | 244.44±46.3ab | ||
IM | 69.07±0.31a | 86.03±47.22a | 247.30±12.25a | 259.84±22.75a | 316.37±12.15a | 345.87±68.53a | |||
MIM | 51.02±7.37b | 45.05±9.04b | 211.77±13.15b | 156.63±10.49a | 262.79±17.88b | 201.68±14.35b | |||
SP | 3.81±1.86a | 2.59±0.96a | 18.15±2.49a | 12.27±3.16a | 21.96±3.20a | 14.86±3.82a | |||
IP | 2.06±0.64a | 2.10±0.18a | 12.41±2.49a | 10.71±1.81a | 14.47±3.00a | 12.82±1.96a | |||
MIP | 2.53±0.19a | 2.18±0.21a | 16.15±3.68a | 11.41±1.19a | 18.68±3.75a | 13.59±1.40a | |||
120 d | SM | 38.33±10.33a | 82.30±8.34a | 532.85±62.36b | 602.37±81.56b | 571.18±59.46a | 684.67±88.23a | ||
IM | 75.03±22.84a | 106.47±5.95a | 538.20±44.12a | 619.96±39.93a | 613.23±56.48a | 726.43±45.02a | |||
MIM | 38.10±5.24a | 60.03±2.79a | 489.70±21.13b | 571.87±29.61c | 527.80±26.33a | 631.90±29.64a | |||
SP | 19.97±3.29a | 14.40±3.26a | 16.10±2.65a | 12.63±1.24a | 36.07±5.02a | 27.03±3.41a | |||
IP | 13.17±2.21b | 7.80±1.63b | 7.60±0.70b | 5.37±0.62a | 20.77±2.56b | 13.17±1.52b | |||
MIP | 19.33±2.40b | 13.57±3.42a | 11.40±0.45ab | 11.50±1.37a | 30.73±2.11a | 25.07±4.79a |
Table 2
Nitrogen accumulation of maize and peanut under different planting patterns / (mg·kg-1)
出苗后天数 After seedling emergence/d | 样品 Sample | 地下部 Underground Dry Matter Weight | 地上部 Aboveground Dry Matter Weight | |||
---|---|---|---|---|---|---|
2018 | 2019 | 2018 | 2019 | |||
65d | SM | 495.13±66.77b | 771.48±147.69b | 1538.62±59.20b | 1440.35±384.82b | |
IM | 1435.23±40.31a | 1120.83±199.93a | 1937.06±53.12a | 2312.79±186.61a | ||
MIM | 733.89±89.99b | 805.40±42.63b | 1584.28±52.49b | 1701.76±423.30ab | ||
SP | 77.20±0.08a | 56.41±0.06a | 519.36±0.52a | 502.63±0.50a | ||
IP | 39.54±0.04a | 51.39±0.05a | 351.46±0.35b | 282.03±0.28b | ||
MIP | 95.19±0.10a | 59.20±0.06a | 449.62±0.45ab | 328.82±0.33b | ||
120d | SM | 4750.30±171.69b | 4472.05±721.46b | 1290.25±17.44b | 1447.84±307.20b | |
IM | 6534.23±323.53a | 7121.15±218.32a | 2092.50±224.26a | 2785.39±571.52a | ||
MIM | 5136.11±431.84b | 5544.28±1968.01ab | 1475.80±163.85b | 2660.96±120.63a | ||
SP | 419.87±0.42a | 482.25±0.48a | 182.30±0.18a | 338.56±0.34a | ||
IP | 288.34±0.29b | 226.46±0.23b | 166.13±0.17a | 111.00±0.11b | ||
MIP | 429.70±0.43a | 233.48±0.23b | 179.40±0.18a | 126.36±0.13b |
Fig. 2
Top 10 of bacteria and fungi in the relative abundance of rhizosphere soil at the phylum level under different planting patternsNote: Fig.A: Relative abundance of bacteria; Fig.B: Relative abundance of fungi; Fig.C: Correlation analysis between bacteria and fungi. SM: the sole maize; SP: the sole peanut; SIM: the soil of sole maize;SIP: the shared soil of sole peanut; IM: intercropped maize; IP: intercropped peanut; II: the shared soil of intercropped maize and peanut. Different lowercase letters represent significant difference level P =0.05
Table 3
Alpha diversity index and number of OTUs
样品 Sample | OTUs | Shannon | Simpson | Ace | Chao | |||||
---|---|---|---|---|---|---|---|---|---|---|
细菌 Bacteria | 真菌 Fungi | 细菌 Bacteria | 真菌 Fungi | 细菌 Bacteria | 真菌 Fungi | 细菌 Bacteria | 真菌 Fungi | 细菌 Bacteria | 真菌 Fungi | |
IM | 1689.67±223.01a | 334.33±53.51a | 10.19±0.09a | 6.36±0.14b | 0.9987±0.0001a | 0.966±0.005a | 2851.02±94.33a | 354.94±50.24a | 2643.34±105.25a | 354.54±49.77a |
SM | 2139.67±149.98a | 370.00±41.53a | 10.39±0.08a | 6.83±0.08a | 0.9986±0.0001a | 0.976±0.002a | 3042.87±65.30a | 393.30±37.68a | 2981.87±96.99a | 389.68±35.80a |
IP | 2100.00±150.30a | 364.67±25.95a | 10.36±0.03a | 6.64±0.16a | 0.9986±0.0001a | 0.974±0.004a | 2984.60±32.82b | 388.66±28.91a | 2865.98±35.20a | 390.51±28.48a |
SP | 2193.00±132.86a | 339.00±24.91a | 10.42±0.04a | 6.62±0.15a | 0.9984±0.0002a | 0.972±0.002a | 3174.60±8.63a | 349.10±18.06a | 3024.28±15.51b | 352.29±18.20a |
II | 2118.33±169.00a | 259.00±40.60b | 10.38±0.05a | 5.88±0.50a | 0.9987±0.0000a | 0.937±0.029a | 2986.89±59.14a | 265.84±29.60a | 2866.18±69.48a | 267.59±28.04b |
SIM | 2216.67±78.27a | 369.67±29.77a | 10.49±0.02a | 6.86±0.06a | 0.9988±0.0000a | 0.977±0.001a | 3159.75±51.38a | 385.01±25.54a | 3008.76±58.45a | 389.01±25.95a |
SIP | 2209.67±136.79a | 286.67±34.10ab | 10.46±0.08a | 6.35±0.08a | 0.9987±0.0002a | 0.962±0.003a | 3020.92±87.10a | 297.00±31.57a | 2921.28±73.27a | 296.74±29.99ab |
1 | 《2021 年世界粮食安全和营养状况:实现粮食体系转型,保障粮食安全,改善营养,确保人人可负担健康膳食》[R]. 罗马,联合国粮农组织, https://doi.org/10.4060/cb4474zh. |
2 |
张昆, 万勇善, 刘风珍, 等. 不同玉米花生间作模式对饱果期花生冠层微环境及光合特性的影响[J]. 山东农业科学, 2021, 53(8): 28-32. DOI:10.14083/j.issn.1001-4942.2021.08.005 .
doi: 10.14083/j.issn.1001-4942.2021.08.005 |
3 |
焦念元, 宁堂原, 赵春, 等. 施氮量和玉米-花生间作模式对氮磷吸收与利用的影响[J]. 作物学报, 2008, 34(4): 706-712. DOI:10.3321/j.issn: 0496-3490.2008.04.024 .
doi: 10.3321/j.issn: 0496-3490.2008.04.024 |
4 |
Wu L K, Wang J Y, Huang W M, et al. Plant-microbe rhizosphere interactions mediated by Rehmannia glutinosa root exudates under consecutive monoculture[J]. Sci Rep, 2015, 5: 15871. DOI:10.1038/srep15871 .
doi: 10.1038/srep15871 |
5 |
刘颖, 王建国, 郭峰, 等. 玉米花生间作对作物干物质积累和氮素吸收利用的影响[J]. 中国油料作物学报, 2020, 42(6): 994-1001. DOI:10.19802/j.issn.1007-9084.2019297 .
doi: 10.19802/j.issn.1007-9084.2019297 |
6 |
覃潇敏, 潘浩男, 肖靖秀, 等. 低磷条件下玉米大豆间作对大豆根瘤生长、固氮功能的影响[J]. 作物学报, 2021, 47(11): 2268-2277. DOI:10.3724/SP.J.1006.2021.04237 .
doi: 10.3724/SP.J.1006.2021.04237 |
7 |
张晓娜, 陈平, 杜青, 等. 玉米/大豆、玉米/花生间作对作物氮素吸收及结瘤固氮的影响[J]. 中国生态农业学报, 2019, 27(8): 1183-1194. DOI:10.13930/j.cnki.cjea.181055 .
doi: 10.13930/j.cnki.cjea.181055 |
8 |
王雪蓉, 张润芝, 李淑敏, 等. 不同供氮水平下玉米/大豆间作体系干物质积累和氮素吸收动态模拟[J]. 中国生态农业学报, 2019, 27(9): 1354-1363. DOI:10.13930/j.cnki.cjea.190075 .
doi: 10.13930/j.cnki.cjea.190075 |
9 |
Wang L Y, Hou B C, Zhang D S, et al. The niche complementarity driven by rhizosphere interactions enhances phosphorus-use efficiency in maize/alfalfa mixture[J]. Food Energy Secur, 2020, 9(4): e252. DOI:10.1002/fes3.252 .
doi: 10.1002/fes3.252 |
10 |
Zhang Q S, Chu Y Y, Xue Y F, et al. Outlook of China's agriculture transforming from smallholder operation to sustainable production[J]. Glob Food Secur, 2020, 26: 100444. DOI:10.1016/j.gfs.2020.100444 .
doi: 10.1016/j.gfs.2020.100444 |
11 |
张雷昌, 汤利, 董艳, 等. 根系互作影响玉米大豆间作作物氮吸收[J]. 云南农业大学学报(自然科学), 2016, 31(6): 1111-1119. DOI:10.16211/j.issn.1004-390X(n).2016.06.022 .
doi: 10.16211/j.issn.1004-390X(n).2016.06.022 |
12 |
Misra P, Maji D, Awasthi A, et al. Vulnerability of soil microbiome to monocropping of medicinal and aromatic plants and its restoration through intercropping and organic amendments[J]. Front Microbiol, 2019, 10: 2604. DOI:10.3389/fmicb.2019.02604 .
doi: 10.3389/fmicb.2019.02604 |
13 |
Chu H Y, Fierer N, Lauber C L, et al. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes[J]. Environ Microbiol, 2010, 12(11): 2998-3006. DOI:10.1111/j.1462-2920.2010.02277.x .
doi: 10.1111/j.1462-2920.2010.02277.x |
14 |
Fan F L, Li Z J, Wakelin S A, et al. Mineral fertilizer alters cellulolytic community structure and suppresses soil cellobiohydrolase activity in a long-term fertilization experiment[J]. Soil Biol Biochem, 2012, 55: 70-77. DOI:10.1016/j.soilbio.2012.06.008 .
doi: 10.1016/j.soilbio.2012.06.008 |
15 |
Coskun D, Britto D T, Shi W M, et al. How plant root exudates shape the nitrogen cycle[J]. Trends Plant Sci, 2017, 22(8): 661-673. DOI:10.1016/j.tplants.2017.05.004 .
doi: 10.1016/j.tplants.2017.05.004 |
16 |
Chen J, Arafat Y, Wu L K, et al. Shifts in soil microbial community, soil enzymes and crop yield under peanut/maize intercropping with reduced nitrogen levels[J]. Appl Soil Ecol, 2018, 124: 327-334. DOI:10.1016/j.apsoil.2017.11.010 .
doi: 10.1016/j.apsoil.2017.11.010 |
17 |
Fu Z D, Zhou L, Chen P, et al. Effects of maize-soybean relay intercropping on crop nutrient uptake and soil bacterial community[J]. J Integr Agric, 2019, 18(9): 2006-2018. DOI:10.1016/S2095-3119(18)62114-8 .
doi: 10.1016/S2095-3119(18)62114-8 |
18 |
Li Q S, Chen J, Wu L K, et al. Belowground interactions impact the soil bacterial community, soil fertility, and crop yield in maize/peanut intercropping systems[J]. Int J Mol Sci, 2018, 19(2): 622. DOI:10.3390/ijms19020622 .
doi: 10.3390/ijms19020622 |
19 |
Guo L N, Wang X K, Lin Y L, et al. Microorganisms that are critical for the fermentation quality of paper mulberry silage[J]. Food Energy Secur, 2021, 10(4): e304. DOI:10.1002/fes3.304 .
doi: 10.1002/fes3.304 |
20 |
Manter D K, Vivanco J M. Use of the ITS primers, ITS1F and ITS4, to characterize fungal abundance and diversity in mixed-template samples by qPCR and length heterogeneity analysis[J]. J Microbiol Methods, 2007, 71(1): 7-14. DOI:10.1016/j.mimet.2007.06.016 .
doi: 10.1016/j.mimet.2007.06.016 |
21 |
Zhu F, Ju Y M, Wang W, et al. Metagenome-wide association of gut microbiome features for schizophrenia[J]. Nat Commun, 2020, 11(1): 1612. DOI:10.1038/s41467-020-15457-9 .
doi: 10.1038/s41467-020-15457-9 |
22 |
Yang F M, Sun J H, Luo H N, et al. Assessment of fecal DNA extraction protocols for metagenomic studies[J]. GigaScience, 2020, 9(7): giaa071. DOI:10.1093/gigascience/giaa071 .
doi: 10.1093/gigascience/giaa071 |
23 |
Magoč T, Salzberg S L. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinformatics, 2011, 27(21): 2957-2963. DOI:10.1093/bioinformatics/btr507 .
doi: 10.1093/bioinformatics/btr507 |
24 |
Bolger A M, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data[J]. Bioinformatics, 2014, 30(15): 2114-2120. DOI:10.1093/bioinformatics/btu170 .
doi: 10.1093/bioinformatics/btu170 |
25 |
Edgar R C, Haas B J, Clemente J C, et al. UCHIME improves sensitivity and speed of chimera detection[J]. Bioinformatics, 2011, 27(16): 2194-2200. DOI:10.1093/bioinformatics/btr381 .
doi: 10.1093/bioinformatics/btr381 |
26 |
Edgar R C. UPARSE: highly accurate OTU sequences from microbial amplicon reads[J]. Nat Methods, 2013, 10(10): 996-998. DOI:10.1038/nmeth.2604 .
doi: 10.1038/nmeth.2604 |
27 |
Bokulich N A, Subramanian S, Faith J J, et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing[J]. Nat Methods, 2013, 10(1): 57-59. DOI:10.1038/nmeth.2276 .
doi: 10.1038/nmeth.2276 |
28 |
Liu G, Liu W, Yang Y, et al. Marginal superiority of maize: an indicator for density tolerance under high plant density[J]. Sci Reports, 2020, 10: 15378. DOI:10.1038/s41598-020-72435-3 .
doi: 10.1038/s41598-020-72435-3 |
29 |
Wang X L, Feng Y J, Yu L L, et al. Sugarcane/soybean intercropping with reduced nitrogen input improves crop productivity and reduces carbon footprint in China[J]. Sci Total Environ, 2020, 719: 137517. DOI:10.1016/j.scitotenv.2020.137517 .
doi: 10.1016/j.scitotenv.2020.137517 |
30 |
Raza M A, Bin Khalid M H, Zhang X, et al. Effect of planting patterns on yield, nutrient accumulation and distribution in maize and soybean under relay intercropping systems[J]. Sci Rep, 2019, 9(1): 4947. DOI:10.1038/s41598-019-41364-1 .
doi: 10.1038/s41598-019-41364-1 |
31 |
Fan Y F, Wang Z L, Liao D P, et al. Uptake and utilization of nitrogen, phosphorus and potassium as related to yield advantage in maize-soybean intercropping under different row configurations[J]. Sci Rep, 2020, 10(1): 9504. DOI:10.1038/s41598-020-66459-y .
doi: 10.1038/s41598-020-66459-y |
32 |
伏云珍, 马琨, 李倩, 等. 马铃薯||玉米间作对土壤细菌多样性的影响[J]. 中国生态农业学报, 2020, 28(11): 1715-1725. DOI:10.13930/j.cnki.cjea.200240 .
doi: 10.13930/j.cnki.cjea.200240 |
33 |
林洪鑫, 潘晓华, 袁展汽, 等. 施氮和木薯-花生间作对木薯养分积累和系统养分利用的影响[J]. 中国农业科学, 2018, 51(17): 3275-3290. DOI:10.3864/j.issn.0578-1752.2018.17.004 .
doi: 10.3864/j.issn.0578-1752.2018.17.004 |
34 |
瓮巧云, 黄新军, 许翰林, 等. 玉米/大豆间作模式对青贮玉米产量、品质及土壤营养、根际微生物的影响[J]. 核农学报, 2021, 35(2): 462-470. DOI: 10.11869/j.issn.1008551.2021.02.0462 .
doi: 10.11869/j.issn.1008551.2021.02.0462 |
35 |
Broeckling C D, Broz A K, Bergelson J, et al. Root exudates regulate soil fungal community composition and diversity[J]. Appl Environ Microbiol, 2008, 74(3): 738-744. DOI:10.1128/AEM.02188-07 .
doi: 10.1128/AEM.02188-07 |
36 |
Berg G, Smalla K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere[J]. FEMS Microbiol Ecol, 2009, 68(1): 1-13. DOI:10.1111/j.1574-6941.2009.00654.x .
doi: 10.1111/j.1574-6941.2009.00654.x |
37 |
Tang X M, Zhong R C, Jiang J, et al. Cassava/peanut intercropping improves soil quality via rhizospheric microbes increased available nitrogen contents[J]. BMC Biotechnol, 2020, 20(1): 13. DOI:10.1186/s12896-020-00606-1 .
doi: 10.1186/s12896-020-00606-1 |
38 |
王宇蕴, 任家兵, 张莹, 等. 小麦蚕豆间作改善蚕豆根际微生物区系与减轻蚕豆枯萎病的作用[J]. 土壤通报, 2020, 51(5): 1127-1133. DOI:10.19336/j.cnki.trtb.2020.05.16 .
doi: 10.19336/j.cnki.trtb.2020.05.16 |
39 |
唐秀梅, 蒙秀珍, 蒋菁, 等. 甘蔗间作花生对不同耕层土壤微生态的影响[J]. 中国油料作物学报, 2020, 42(5): 713-722. DOI:10.19802/j.issn.1007-9084.2019318 .
doi: 10.19802/j.issn.1007-9084.2019318 |
40 |
Li B, Li Y Y, Wu H M, et al. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation[J]. Proc Natl Acad Sci USA, 2016, 113(23): 6496-6501. DOI:10.1073/pnas.1523580113 .
doi: 10.1073/pnas.1523580113 |
41 |
储成才, 王毅, 王二涛. 植物氮磷钾养分高效利用研究现状与展望[J]. 中国科学: 生命科学, 2021, 51(10): 1415-1423. DOI:10.1360/SSV-2021-0163 .
doi: 10.1360/SSV-2021-0163 |
42 |
Trivedi P, Leach J E, Tringe S G, et al. Plant-microbiome interactions: from community assembly to plant health[J]. Nat Rev Microbiol, 2020, 18(11): 607-621. DOI:10.1038/s41579-020-0412-1 .
doi: 10.1038/s41579-020-0412-1 |
43 |
Rampelotto P H, de Siqueira Ferreira A, Barboza A D M, et al. Changes in diversity, abundance, and structure of soil bacterial communities in Brazilian Savanna under different land use systems[J]. Microb Ecol, 2013, 66(3): 593-607. DOI:10.1007/s00248-013-0235-y .
doi: 10.1007/s00248-013-0235-y |
44 |
Lee S Y, Tindwa H, Lee Y S, et al. Biocontrol of anthracnose in pepper using chitinase, beta-1, 3 glucanase, and 2-furancarboxaldehyde produced by Streptomyces cavourensis SY224[J]. J Microbiol Biotechnol, 2012, 22(10): 1359-1366. DOI:10.4014/jmb.1203.02056 .
doi: 10.4014/jmb.1203.02056 |
45 |
Zheng X F, Wang Z R, Zhu Y J, et al. Effects of a microbial restoration substrate on plant growth and rhizosphere bacterial community in a continuous tomato cropping greenhouse[J]. Sci Rep, 2020, 10(1): 13729. DOI:10.1038/s41598-020-70737-0 .
doi: 10.1038/s41598-020-70737-0 |
46 |
Liang J, Tang S Q, Gong J L, et al. Responses of enzymatic activity and microbial communities to biochar/compost amendment in sulfamethoxazole polluted wetland soil[J]. J Hazard Mater, 2020, 385: 121533. DOI:10.1016/j.jhazmat.2019.121533 .
doi: 10.1016/j.jhazmat.2019.121533 |
47 |
张晓岗, 刘萍, 马琨, 等. 间作栽培对宁夏南部山区马铃薯根际土壤真菌菌群结构的影响[J]. 西北农业学报, 2020, 29(12): 1875-1882. DOI:10.7606/ji.ssn.1004-1389.2020.12.013 .
doi: 10.7606/ji.ssn.1004-1389.2020.12.013 |
48 |
Phillips L A, Ward V, Jones M D. Ectomycorrhizal fungi contribute to soil organic matter cycling in sub-boreal forests[J]. ISME J, 2014, 8(3): 699-713. DOI:10.1038/ismej.2013.195 .
doi: 10.1038/ismej.2013.195 |
49 |
Lian T, Mu Y, Ma Q, et al. Use of sugarcane-soybean intercropping in acid soil impacts the structure of the soil fungal community [J]. Sci Rep, 2018, 8(1):14488. DOI: 10.1038/s41598-018-32920-2
doi: 10.1038/s41598-018-32920-2 |
[1] | Jia-li GONG, Dong-lei SUN, Neng-fei BIAN, Xing WANG, Xiao-jun WANG. Research progress of peanut bacterial wilt in China [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1159-1165. |
[2] | Min-jie GUO, Li DENG, Yu-rong Li, Jin WANG, Li REN. Comprehensive evaluation of Jihua peanut varieties with high oleic acid based on principal component and cluster analysis [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1210-1217. |
[3] | Zhong-sheng CAO, Yan-da LI, Jun-bao HUANG, Bin-feng SUN, Chun YE, Shi-fu SHU, Luo-fa WU, Yong-chao TIAN. Sensitive vegetation indices and optimal bandwidths for monitoring peanut LAI and AGB [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1320-1328. |
[4] | SACHURULA, BADUMUCAICIKE, Rui-lin TIAN, Zhan-ming HOU, Zhen-xing WANG. Effects of peanut, soybean and carrot as feed on development and adult survival of Dolycoris baccarum [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1337-1340. |
[5] | Shao-jian LI, Meng GAO, Na WANG, Wan-wan FAN, Su-ling SANG, Guang YANG, Hang-yu LI, Xiao-wei CUI, Zhen-yu WANG. Differences in conidia of peanut web blotch pathogen and its pathogenicity analysis [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1341-1348. |
[6] | Jia-ning LIANG, Jun ZHANG, Le-zeng TAN, Song-nan YANG, Xue-ying LI, Dan YAO, Liang-yu CHEN, Qiu-lin WU, Yong-yi XING, Xiao HAN. Transcriptome analysis of peanut protein mutants at different seed development stages [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 1018-1029. |
[7] | Ting XU, Yan-tao LIU, Hai-jiang WANG, Qiang LI, Peng WANG, Hong-ye DONG. Effects of saline-alkali stress on germination characteristics of peanut seeds and comprehensive identification and evaluation of salt damage [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 1037-1047. |
[8] | Liang-qiang CHENG, Jian-bin GUO, Wei-tao LI, Li HUANG, Huai-yong LUO, Nian LIU, Xiao-jing ZHOU, Wei-gang CHEN, Jun WANG, Jian-wei LYU, Ting-hui HU, Qing-lin RAO, Yong LEI, Bo-shou LIAO, Hui-fang JIANG. Novel genotypes and quantitative trait locus for rust resistance in peanut [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 1074-1080. |
[9] | Hong-chang JI, Xiao-chen QIU, Wen-hao LIU, Chang-li HU, Ming KONG, Xiao-hui HU, Jian-bin HUANG, Xue YANG, Yan-yan TANG, Xiao-jun ZHANG, Jing-shan WANG, Li-xian QIAO. Construction and application of near infrared ray model for oil content prediction in peanut kernel [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 1089-1097. |
[10] | Dong-yang YU, Li-ying YAN, Wan-duo SONG, Yan-ping KANG, Yong LEI, Yu-ning CHEN, Dong-xin HUAI, Xin WANG, Zhi-hui WANG, Huai-yong LUO, Xiao-jing ZHOU, Li HUANG, Nian LIU, Wei-gang CHEN, Hui-fang JIANG, Bo-shou LIAO. Progress on pathogenicity differentiation in Sclerotium rolfsii isolates from peanut [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 930-936. |
[11] | Wei-bo DONG, Min LI. Occurrence and management of tomato spotted wilt virus in peanut [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 937-947. |
[12] | Yong-ping XIE, Yun-huan ZHENG, Ying-duo GUO, Zhao-cong CHEN. The first report on one haploid plant in cultivated peanut using anther culture technique [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 810-817. |
[13] | Bei WU, Nian LIU, Li HUANG, Huai-yong LUO, Xiao-jing ZHOU, Wei-gang CHEN, Jian-bin GUO, Dong-xin HUAI, You-lin XIA, Yong LEI, Bo-shou LIAO, Hui-fang JIANG. Identification of markers stably associated with different fatty acid content in peanut through association analysis [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 818-825. |
[14] | Xue-feng SHEN, Wen-tao LU, Yong CHEN. Aluminum stress on root metabolism of peanutbased on metabolomics of UPLC-MS/MS [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 833-844. |
[15] | Ming LI, Hui CAO, Rui-rui XU. Ectopic expression of peanut AhMYB113 gene enhances anthocyanin accumulation in tobacco [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 845-851. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||