CHINESE JOURNAL OF OIL CROP SCIENCES ›› 2022, Vol. 44 ›› Issue (6): 1320-1328.doi: 10.19802/j.issn.1007-9084.2021290
Previous Articles Next Articles
Zhong-sheng CAO1(), Yan-da LI1(
), Jun-bao HUANG1, Bin-feng SUN1, Chun YE1, Shi-fu SHU1, Luo-fa WU1, Yong-chao TIAN2
Received:
2021-11-12
Online:
2022-12-25
Published:
2022-11-24
Contact:
Yan-da LI
E-mail:czsheng2015@outlook.com;liyanda2008@126.com
CLC Number:
Zhong-sheng CAO, Yan-da LI, Jun-bao HUANG, Bin-feng SUN, Chun YE, Shi-fu SHU, Luo-fa WU, Yong-chao TIAN. Sensitive vegetation indices and optimal bandwidths for monitoring peanut LAI and AGB[J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1320-1328.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jouroilcrops.cn/EN/10.19802/j.issn.1007-9084.2021290
Table 1
Data acquisition calendar
年份 Year | 取样时间 Sampling date | 生育时期 Phenological stage | 样本数量 Number of sample | 在本研究中的应用 Application of data |
---|---|---|---|---|
2018 | 5/27 | 苗期 Seedling | 24 | 检验 Validation |
6/11 | 结荚期 Podding | 24 | ||
6/26 | 成熟期 Maturing | 24 | ||
2019 | 5/22 | 苗期1 Seedling 1 | 24 | 建模 Modeling |
5/29 | 苗期2 Seedling 2 | 24 | ||
6/4 | 开花下针期 Flowering and needling stage | 24 | ||
6/15 | 结荚期 Podding | 24 | ||
6/27 | 成熟期 Maturing | 24 |
Table 2
Vegetation indices used in the investigation
序号 Code | 缩写 Abbreviation for vegetation index | 植被指数 Vegetation index | 指数构型 Formula | 文献 Ref. |
---|---|---|---|---|
1 | BWDRVI | Blue-wide dynamic range vegetation index | (0.1×ρ800-ρ470)/(0.1×ρ800+ρ470) | [ |
2 | GNDVI | Green normalized difference vegetation index | (ρ800-ρ550)/(ρ800+ρ550) | [ |
3 | OSAVI | Optimized soil adjusted vegetation index | (1+0.16)×(ρ800-ρ670)/(ρ800+ρ670+0.16) | [ |
4 | EVI2 | Enhanced vegetation index 2 | 2.4×(ρ800-ρ670)/( ρ800+ρ670+1) | [ |
5 | WDRVI | Wide dynamic range vegetation index | (0.1×ρ800-ρ670)/(0.1×ρ800+ρ670) | [ |
6 | mSR705 | Modified simple ratio 705, 750 | (ρ750/ρ705-1)/(√(ρ750/ρ705)+1) | [ |
7 | CIred-edge | Chlorophyll index red-edge | (ρ750/ρ710)-1 | [ |
8 | NDRE | Normalized difference red edge | (ρ790-ρ720)/(ρ790+ρ720) | [ |
Table 3
Relationship between vegetation indices and LAI, AGB
农学参数 Parameter | 植被指数 Vegetation index | 波段1 λ1 /nm | 波段2 λ2 /nm | 建模决定系数 R2 | 检验相对均方根误差 RRMSE /% |
---|---|---|---|---|---|
叶面积指数 LAI | NDRE | 790(NIR) | 720(red-edge) | 0.7621 | 13.91 |
mSR705 | 750(red-edge) | 705(red-edge) | 0.7007 | 18.40 | |
CIred-edge | 750(red-edge) | 710(red-edge) | 0.7091 | 16.90 | |
WDRVI | 800(NIR) | 670(VIS) | 0.6532 | 20.31 | |
GNDVI | 800(NIR) | 550(VIS) | 0.6530 | 21.54 | |
OSAVI | 800(NIR) | 670(VIS) | 0.5887 | 22.45 | |
EVI2 | 800(NIR) | 670(VIS) | 0.5897 | 24.35 | |
BWDRVI | 800(NIR) | 470(VIS) | 0.3787 | 30.48 | |
地上部生物量 AGB | NDRE | 790(NIR) | 720(red-edge) | 0.7019 | 20.65 |
CIred-edge | 750(red-edge) | 710(red-edge) | 0.6343 | 24.23 | |
mSR705 | 750(red-edge) | 705(red-edge) | 0.6208 | 25.59 | |
OSAVI | 800(NIR) | 670(VIS) | 0.5596 | 26.58 | |
WDRVI | 800(NIR) | 670(VIS) | 0.5477 | 27.78 | |
GNDVI | 800(NIR) | 550(VIS) | 0.5314 | 29.50 | |
EVI2 | 800(NIR) | 670(VIS) | 0.4908 | 32.14 | |
BWDRVI | 800(NIR) | 470(VIS) | 0.4588 | 33.47 |
Table 4
Performance of vegetation indices with optimal bandwidths
农学参数 Parameter | 植被指数 Vegetation index | 波段1 λ1 | 波段2 λ2 | 建模决定系数 R2 | 检验相对均方根误差 RRMSE /% | 监测模型 Equation | ||
---|---|---|---|---|---|---|---|---|
波长 Wavelength /nm | 带宽 Bandwidth /nm | 波长 Wavelength /nm | 带宽 Bandwidth /nm | |||||
叶面积指数 LAI | NDRE(λ790-b33, λ720-b53) | 790 | 33 | 720 | 53 | 0.7482 | 13.88 | LAI=0.0296×exp(14.365×VI) |
mSR705(λ750-b101, λ705-b95) | 750 | 101 | 705 | 95 | 0.7428 | 18.33 | LAI=0.0302×exp(9.8738×VI) | |
CIred-edge(λ750-b101, λ710-b73) | 750 | 101 | 710 | 73 | 0.7449 | 16.88 | LAI=0.0603×exp(3.8149×VI) | |
地上部生物量 AGB | NDRE(λ790-b89, λ720-b89) | 790 | 89 | 720 | 89 | 0.7103 | 20.42 | AGB=0.6240×exp(20.222×VI) |
mSR705(λ750-b101, λ705-b101) | 750 | 101 | 705 | 101 | 0.6866 | 23.73 | AGB=1.5901×exp(12.229×VI) | |
CIred-edge(λ750-b101, λ710-b99) | 750 | 101 | 710 | 99 | 0.6895 | 23.62 | AGB=2.1329×exp(5.892×VI) |
1 |
张冠初, 戴良香, 徐扬, 等. 减氮配施钙肥对花生光合特性、产量及肥料贡献率的影响[J]. 中国油料作物学报, 2020, 42(6): 1010-1018. DOI:10.19802/j.issn.1007-9084.2020210 .
doi: 10.19802/j.issn.1007-9084.2020210 |
2 |
Zhang J L, Geng Y, Guo F, et al. Research progress on the mechanism of improving peanut yield by single-seed precision sowing[J]. J Integr Agric, 2020, 19(8): 1919-1927. DOI:10.1016/S2095-3119(19)62763-2 .
doi: 10.1016/S2095-3119(19)62763-2 |
3 |
陶惠林, 徐良骥, 冯海宽, 等. 基于无人机高光谱遥感的冬小麦株高和叶面积指数估算[J]. 农业机械学报, 2020, 51(12): 193-201. DOI:10.6041/j.issn.1000-1298.2020.12.021 .
doi: 10.6041/j.issn.1000-1298.2020.12.021 |
4 |
吾木提·艾山江, 买买提·沙吾提, 陈水森, 等. 基于GF-1/2卫星数据的冬小麦叶面积指数反演[J]. 作物学报, 2020, 46(5): 787-797. DOI:10.3724/SP.J.1006.2020.91049 .
doi: 10.3724/SP.J.1006.2020.91049 |
5 |
徐云碧. 作物科学中的环境型鉴定(Envirotyping)及其应用[J]. 中国农业科学, 2015, 48(17): 3354-3371. DOI:10.3864/j.issn.0578-1752.2015.17.004 .
doi: 10.3864/j.issn.0578-1752.2015.17.004 |
6 |
Wang R N, Sun Z X, Bai W, et al. Canopy heterogeneity with border-row proportion affects light interception and use efficiency in maize/peanut strip intercropping[J]. Field Crops Res, 2021, 271: 108239. DOI:10.1016/j.fcr.2021.108239 .
doi: 10.1016/j.fcr.2021.108239 |
7 |
王雪, 崔少雄, 孙志梅, 等. 基于生物量和养分累积量的花生品种生态适应性评价[J]. 应用生态学报, 2015, 26(7): 2023-2029. DOI:10.13287/j.1001-9332.20150527.002 .
doi: 10.13287/j.1001-9332.20150527.002 |
8 |
Qi H X, Wu Z Y, Zhang L, et al. Monitoring of peanut leaves chlorophyll content based on drone-based multispectral image feature extraction[J]. Comput Electron Agric, 2021, 187: 106292. DOI:10.1016/j.compag.2021.106292 .
doi: 10.1016/j.compag.2021.106292 |
9 |
Chen A, Orlov-Levin V, Meron M. Applying high-resolution visible-channel aerial imaging of crop canopy to precision irrigation management[J]. Agric Water Manag, 2019, 216: 196-205. DOI:10.1016/j.agwat.2019.02.017 .
doi: 10.1016/j.agwat.2019.02.017 |
10 |
杨晶晶, 王飞, 张博文, 等. 不同施肥处理花生反射光谱与产量相关性研究[J]. 花生学报, 2020, 49(1): 47-53. DOI:10.14001/j.issn.1002-4093.2020.01.007 .
doi: 10.14001/j.issn.1002-4093.2020.01.007 |
11 |
李军玲, 李梦夏, 陈争. 基于地面高光谱和GF-1卫星的区域花生LAI估算[J]. 生态学杂志, 2022, 41(3): 562-568. DOI:10.13292/j.1000-4890.202202.029 .
doi: 10.13292/j.1000-4890.202202.029 |
12 |
李军玲, 李梦夏, 李树岩, 等. 花生叶面积指数地面高光谱遥感估算模型研究[J]. 灌溉排水学报, 2021, 40(5): 69-75. DOI:10.13522/j.cnki.ggps.2019460 .
doi: 10.13522/j.cnki.ggps.2019460 |
13 | 吕晓, 殷红, 蒋春姬, 等. 基于高光谱遥感的不同品种花生冠层叶面积指数的通用估算模型[J]. 中国农业气象, 2016, 37(6): 720-727. |
14 |
颜丙囤, 侯学会, 梁守真, 等. 花生叶鲜生物量的高光谱估算模型[J]. 江苏农业科学, 2017, 45(8): 59-62. DOI:10.15889/j.issn.1002-1302.2017.08.016 .
doi: 10.15889/j.issn.1002-1302.2017.08.016 |
15 |
Du H S, Jiang H L, Zhang L F, et al. Evaluation of spectral scale effects in estimation of vegetation leaf area index using spectral indices methods[J]. Chin Geogr Sci, 2016, 26(6): 731-744. DOI:10.1007/s11769-016-0833-y .
doi: 10.1007/s11769-016-0833-y |
16 | Ambrus A, Burai P, Lénárt C, et al. Estimating biomass of winter wheat using narrowband vegetation indices for precision agriculture[J]. Journal of Central European Green Innovation, 2015, 3(02): 13-22. |
17 |
Heiskanen J, Rautiainen M, Stenberg P, et al. Sensitivity of narrowband vegetation indices to boreal forest LAI, reflectance seasonality and species composition[J]. ISPRS J Photogramm Remote Sens, 2013, 78: 1-14. DOI:10.1016/j.isprsjprs.2013.01.001 .
doi: 10.1016/j.isprsjprs.2013.01.001 |
18 |
Ryu J H, Oh D, Cho J. Simple method for extracting the seasonal signals of photochemical reflectance index and normalized difference vegetation index measured using a spectral reflectance sensor[J]. J Integr Agric, 2021, 20(7): 1969-1986. DOI:10.1016/S2095-3119(20)63410-4 .
doi: 10.1016/S2095-3119(20)63410-4 |
19 |
Deng L, Mao Z H, Li X J, et al. UAV-based multispectral remote sensing for precision agriculture: a comparison between different cameras[J]. ISPRS J Photogramm Remote Sens, 2018, 146: 124-136. DOI:10.1016/j.isprsjprs.2018.09.008 .
doi: 10.1016/j.isprsjprs.2018.09.008 |
20 |
刘斌, 任建强, 陈仲新, 等. 冬小麦鲜生物量估算敏感波段中心及波宽优选[J]. 农业工程学报, 2016, 32(16): 125-134. DOI:10.11975/j.issn.1002-6819.2016.16.018 .
doi: 10.11975/j.issn.1002-6819.2016.16.018 |
21 |
黄婷, 梁亮, 耿笛, 等. 波段宽度对利用植被指数估算小麦LAI的影响[J]. 农业工程学报, 2020, 36(4): 168-177. DOI:10.11975/j.issn.1002-6819.2020.04.020 .
doi: 10.11975/j.issn.1002-6819.2020.04.020 |
22 |
冯晓敏, 杨永, 臧华栋, 等. 燕麦花生间作系统作物氮素累积与转移规律[J]. 植物营养与肥料学报, 2018, 24(3): 617-624. DOI:10.11674/zwyf.17226 .
doi: 10.11674/zwyf.17226 |
23 |
Konôpka B, Pajtík J, Marušák R, et al. Specific leaf area and leaf area index in developing stands of Fagus sylvatica L. and Picea abies Karst[J]. For Ecol Manag, 2016, 364: 52-59. DOI:10.1016/j.foreco.2015.12.005 .
doi: 10.1016/j.foreco.2015.12.005 |
24 |
王丽爱, 谭昌伟, 杨昕, 等. 基于MK-SVR模型的小麦叶面积指数遥感反演[J]. 农业机械学报, 2015, 46(5): 245-251. DOI:10.6041/j.issn.1000-1298.2015.05.035 .
doi: 10.6041/j.issn.1000-1298.2015.05.035 |
25 |
Hancock D W, Dougherty C T. Relationships between blue- and red-based vegetation indices and leaf area and yield of alfalfa[J]. Crop Sci, 2007, 47(6): 2547-2556. DOI:10.2135/cropsci2007.01.0031 .
doi: 10.2135/cropsci2007.01.0031 |
26 | Lymburner L, Beggs P, Jacobson C. Estimation of canopy-average surface-specific leaf area using Landsat TM data[J]. Photogramm Eng Remote Sens J Am Soc Photogramm, 2000, 66(2): 183-191. |
27 |
Wu C Y, Niu Z, Tang Q, et al. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation[J]. Agric For Meteorol, 2008, 148(8/9): 1230-1241. DOI:10.1016/j.agrformet.2008.03.005 .
doi: 10.1016/j.agrformet.2008.03.005 |
28 |
Jiang Z Y, Huete A R, Didan K, et al. Development of a two-band enhanced vegetation index without a blue band[J]. Remote Sens Environ, 2008, 112(10): 3833-3845. DOI:10.1016/j.rse.2008.06.006 .
doi: 10.1016/j.rse.2008.06.006 |
29 |
Gitelson A A. Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation[J]. J Plant Physiol, 2004, 161(2): 165-173. DOI:10.1078/0176-1617-01176 .
doi: 10.1078/0176-1617-01176 |
30 |
赵娟, 黄文江, 张耀鸿, 等. 冬小麦不同生育时期叶面积指数反演方法[J]. 光谱学与光谱分析, 2013, 33(9): 2546-2552. DOI:10.3964/j.issn.1000-0593(2013)09-2546-07 .
doi: 10.3964/j.issn.1000-0593(2013)09-2546-07 |
31 |
Wu C Y, Niu Z, Tang Q, et al. Remote estimation of gross primary production in wheat using chlorophyll-related vegetation indices[J]. Agric For Meteorol, 2009, 149(6/7): 1015-1021. DOI:10.1016/j.agrformet.2008.12.007 .
doi: 10.1016/j.agrformet.2008.12.007 |
32 |
Gitelson A, Merzlyak M N. Quantitative estimation of chlorophyll-a using reflectance spectra: experiments with autumn chestnut and maple leaves[J]. J Photochem Photobiol B Biol, 1994, 22(3): 247-252. DOI:10.1016/1011-1344(93)06963-4 .
doi: 10.1016/1011-1344(93)06963-4 |
33 |
Cao Z S, Cheng T, Ma X, et al. A new three-band spectral index for mitigating the saturation in the estimation of leaf area index in wheat[J]. Int J Remote Sens, 2017, 38(13): 3865-3885. DOI:10.1080/01431161.2017.1306141 .
doi: 10.1080/01431161.2017.1306141 |
34 |
Gitelson A A. Remote estimation of crop fractional vegetation cover: the use of noise equivalent as an indicator of performance of vegetation indices[J]. Int J Remote Sens, 2013, 34(17): 6054-6066. DOI:10.1080/01431161.2013.793868 .
doi: 10.1080/01431161.2013.793868 |
35 |
Nguy-Robertson A L, Peng Y, Gitelson A A, et al. Estimating green LAI in four crops: potential of determining optimal spectral bands for a universal algorithm[J]. Agric For Meteorol, 2014, 192/193: 140-148. DOI:10.1016/j.agrformet.2014.03.004 .
doi: 10.1016/j.agrformet.2014.03.004 |
36 |
Jay S, Maupas F, Bendoula R, et al. Retrieving LAI, chlorophyll and nitrogen contents in sugar beet crops from multi-angular optical remote sensing: comparison of vegetation indices and PROSAIL inversion for field phenotyping[J]. Field Crops Res, 2017, 210: 33-46. DOI:10.1016/j.fcr.2017.05.005 .
doi: 10.1016/j.fcr.2017.05.005 |
37 |
谷成燕, 杜华强, 周国模, 等. 基于PROSAIL辐射传输模型的毛竹林叶面积指数遥感反演[J]. 应用生态学报, 2013, 24(8): 2248-2256. DOI:10.13287/j.1001-9332.2013.0383 .
doi: 10.13287/j.1001-9332.2013.0383 |
38 | 姚霞. 小麦冠层和单叶氮素营养指标的高光谱监测研究[D]. 南京: 南京农业大学, 2009. |
39 |
高兴, 李斐, 杨海波, 等. 基于红边位置的马铃薯植株氮浓度估测方法研究[J]. 植物营养与肥料学报, 2019, 25(2): 296-310. DOI:10.11674/zwyf.18058 .
doi: 10.11674/zwyf.18058 |
40 |
Richetti J, Boote K J, Hoogenboom G, et al. Remotely sensed vegetation index and LAI for parameter determination of the CSM-CROPGRO-Soybean model when in situ data are not available[J]. Int J Appl Earth Obs Geoinformation, 2019, 79: 110-115. DOI:10.1016/j.jag.2019.03.007 .
doi: 10.1016/j.jag.2019.03.007 |
41 |
李长春, 李亚聪, 王艺琳, 等. 基于小波能量系数和叶面积指数的冬小麦生物量估算[J]. 农业机械学报, 2021, 52(12): 191-200. DOI:10.6041/j.issn.1000-1298.2021.12.020 .
doi: 10.6041/j.issn.1000-1298.2021.12.020 |
[1] | Hong-chang JI, Xiao-chen QIU, Wen-hao LIU, Chang-li HU, Ming KONG, Xiao-hui HU, Jian-bin HUANG, Xue YANG, Yan-yan TANG, Xiao-jun ZHANG, Jing-shan WANG, Li-xian QIAO. Construction and application of near infrared ray model for oil content prediction in peanut kernel [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 1089-1097. |
[2] | Meng-sheng WEI, Wei MENG, Xue-ting CHEN, Qing ZHANG, Bo-feng LENG, Xian-rong LI, Zhong-chao FENG. Analysis of financial factors in the price fluctuation of rapeseed products in China based on TVP-SV-VAR model [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(2): 268-279. |
[3] | Xu-tao ZHAO, Hai-dong LIU, Kai-xiang LI, Liang XU, De-zhi DU. Breeding of elite restorer lines based on 3 Pol CMS lines in spring Brassica napus L. [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(6): 961-970. |
[4] | ZHANG Mao-ning, ZHANG Xin-you, SUN Zi-qi, HUANG Bing-yan, LIU Hua, XU Jing, ZHANG Zhong-xin, QI Fei-yan, DONG Wen-zhao. Genetic model analysis of peanut pod traits in nested-crossing population [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(4): 573-. |
[5] | YU Hai-yang, LI Yu-ying, LYU Yu-ying, ZHANG Xiu-rong, YANG Hui, ZHANG Kun, WANG Lin, LIU Feng-zhen, WAN Yong-shan. Analysis of genetic effects for seed high oil content based on multi-population in peanut(Arachishypogaea L.) [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(3): 487-. |
[6] | WANG Rui-qing, LYU Feng-juan, LIN Hong-xin, ZHANG Zhi-hua, YUAN Zhan-qi, WEI Lin-gen, XIAO Yun-ping. Effects of density on yield and leaf area index of autumn sesame in red soil dryland under low nitrogen [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(2): 271-. |
[7] | YE Jia-li, JIA Hai-xia, GUO Dong-liang, YAN Wen-liang, YANG Liang-jie, HUANG Li-li, CHEN Da-wei, LI Gong-ze, XIE Li-qiong. Establishment and applicant of near-infrared reflectance spectroscopy models for predicting protein,linolenic acid and lignan contents of flaxseed [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(2): 353-. |
[8] | LYU Xiao, ZHAN Shen-ye, YU Hai-qiu, YIN Hong, SUI Ming, JIANG Chun-ji. Hyperspectral remote sensing estimation model of peanut canopy apar and fapar [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2020, 42(5): 878-. |
[9] | JIN Lin-xue, LI Yun-peng, WU Rui-fen, LI Dan, WANG Jia. Forecast method of growth stage and yield of soybean based on climate suitability in Inner Mongolia [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2020, 42(5): 903-. |
[10] | LIU Lai, WANG Wei-Hong*, WANG Wei-hong, ZHANG Yan . Estimation models for spectral response and cadmium contents in leaves of Brassica napus L. [J]. 中国油料作物学报, 2019, 41(1): 46-. |
[11] | MAO Xin,YANG Jian-li,ZHOU Xiang,WANG Nai-jiang,JI Xiang-xiang,FENG Hao,HE Jian-qiang *. Relationships between traits and yields of rapeseed based on the structural equation modeling [J]. 中国油料作物学报, 2019, 41(1): 33-. |
[12] | ZHAO Jing, ZHANG Heng-bin, ZENG Kai, LUO Geng-tong, ZHAN Yong* . Analysis of dry matter accumulation and yield traits for super high-yielding soybean Jiyu 86 in Xinjiang [J]. 中国油料作物学报, 2018, 40(3): 367-. |
[13] | HUANG Wen-Hui, WANG Hui, CAI Xin, WANG Wen-Xiang, FU Li, HU Qiong, CHENG Hong-Tao, MEI De-Sheng* . Genetic analysis of lodging resistance related traits of Brassica napus DH population [J]. 中国油料作物学报, 2018, 40(1): 18-. |
[14] | LI Hong-ge, ZHANG Li-ping, WU Xiao-ming* . Genetics of stem strength in Brassica napus in mixed model of major gene and polygene [J]. 中国油料作物学报, 2018, 40(1): 10-. |
[15] | LU Jian-hua LI Xiang, ZHAO Wei, SHEN Xin-jie,GUO Wei, Wang Xiao-yi, ZHOU Xin-an, JIAO Yong-qing * . Characterization of different functions between a soybean MYB transcription factor GmMYB010 and its orthologous gene in Arabidopsis thaliana [J]. 中国油料作物学报, 2017, 39(3): 281-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||