CHINESE JOURNAL OF OIL CROP SCIENCES ›› 2022, Vol. 44 ›› Issue (6): 1159-1165.doi: 10.19802/j.issn.1007-9084.2021298
Previous Articles Next Articles
Jia-li GONG(), Dong-lei SUN, Neng-fei BIAN, Xing WANG, Xiao-jun WANG(
)
Received:
2021-11-20
Online:
2022-12-25
Published:
2022-11-24
Contact:
Xiao-jun WANG
E-mail:18355092528@163.com;wangxj0516@126.com
CLC Number:
Jia-li GONG, Dong-lei SUN, Neng-fei BIAN, Xing WANG, Xiao-jun WANG. Research progress of peanut bacterial wilt in China[J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1159-1165.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jouroilcrops.cn/EN/10.19802/j.issn.1007-9084.2021298
1 |
李金华. 花生主要病害的发生与防治[J]. 现代农业科技, 2019(3): 97-98. DOI:10.3969/j.issn.1007-5739.2019.03.058 .
doi: 10.3969/j.issn.1007-5739.2019.03.058 |
2 |
韩锁义, 张新友, 朱军, 等. 花生叶斑病研究进展[J]. 植物保护, 2016, 42(2): 14-18. DOI:10.3969/j.issn.0529-1542.2016.02.003 .
doi: 10.3969/j.issn.0529-1542.2016.02.003 |
3 |
张立伟, 王辽卫. 我国花生产业发展状况、存在问题及政策建议[J]. 中国油脂, 2020, 45(11): 116-122. DOI:10.12166/j.zgyz.1003-7969/2020.11.024 .
doi: 10.12166/j.zgyz.1003-7969/2020.11.024 |
4 |
陈本银, 姜慧芳, 廖伯寿, 等. 中国花生青枯病抗性遗传改良研究进展[J]. 中国农学通报, 2007, 23(8): 369-372. DOI:10.3969/j.issn.1000-6850.2007.08.080 .
doi: 10.3969/j.issn.1000-6850.2007.08.080 |
5 | 吕建伟, 姜慧芳, 任小平, 等. ICRISAT花生微核心种质青枯病抗性鉴定[J]. 中国农学通报, 2010, 26(10): 47-51. |
6 |
宋江春, 李拴柱, 王建玉, 等. 我国花生抗青枯病育种研究进展[J]. 中国种业, 2019(9): 19-21. DOI:10.19462/j.cnki.1671-895x.20190821.015 .
doi: 10.19462/j.cnki.1671-895x.20190821.015 |
7 | 廖伯寿 .我国花生遗传改良现状与中长期发展目标[C].//食物与能源安全战略中的中国油料——中国作物学会油料作物专业委员会第五届学术年会论文集.2004:69-73. |
8 |
Yuliar, Nion Y A, Toyota K. Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum [J]. Microbes Environ, 2015, 30(1): 1-11. DOI:10.1264/jsme2.ME14144 .
doi: 10.1264/jsme2.ME14144 |
9 |
Huang J F, Wei Z, Tan S Y, et al. The rhizosphere soil of diseased tomato plants as a source for novel microorganisms to control bacterial wilt[J]. Appl Soil Ecol, 2013, 72: 79-84. DOI:10.1016/j.apsoil.2013.05.017 .
doi: 10.1016/j.apsoil.2013.05.017 |
10 | 陆济. 花生青枯病生防菌筛选及花生品种抗性测定[D]. 广州: 仲恺农业工程学院, 2017. |
11 | 张冲. 花生抗青枯病的分子生物学基础研究[D]. 福州: 福建农林大学, 2010. |
12 |
张佃文, 郑承钊, 王斌, 等. 中国北方大花生抗青枯病新品种的选育与利用[J]. 农业科技通讯, 2007(6): 35-36. DOI:10.3969/j.issn.1000-6400.2007.06.024 .
doi: 10.3969/j.issn.1000-6400.2007.06.024 |
13 |
李振华, 荆建国, 聂红民, 等. 高抗青枯病花生新品种濮花36号的选育[J]. 种业导刊, 2020(6): 31-33. DOI:10.3969/j.issn.1003-4749.2020.06.010 .
doi: 10.3969/j.issn.1003-4749.2020.06.010 |
14 |
Wicker E, Grassart L, Coranson-Beaudu R, et al. Ralstonia solanacearum strains from Martinique (French West Indies) exhibiting a new pathogenic potential[J]. Appl Environ Microbiol, 2007, 73(21): 6790-6801. DOI:10.1128/AEM.00841-07 .
doi: 10.1128/AEM.00841-07 |
15 |
Zhang C, Chen H, Cai T C, et al. Overexpression of a novel peanut NBS-LRR gene AhRRS5 enhances disease resistance to Ralstonia solanacearum in tobacco[J]. Plant Biotechnol J, 2017, 15(1): 39-55. DOI:10.1111/pbi.12589 .
doi: 10.1111/pbi.12589 |
16 | 姜慧芳. 花生抗青枯病种质的遗传多样性及抗性分子标记[D]. 武汉: 华中农业大学, 2006. |
17 |
Fegan M, Prior P. Diverse members of the Ralstonia solanacearum species complex cause bacterial wilts of banana[J]. Austral Plant Pathol, 2006, 35(2): 93. DOI:10.1071/ap05105 .
doi: 10.1071/ap05105 |
18 | 任小平. 花生青枯病抗性的分子标记研究[D]. 北京: 中国农业科学院, 2005. |
19 | 孙茜. 花生青枯病拮抗菌的分离鉴定、发酵条件及活性产物的研究[D]. 南京: 南京农业大学, 2012. |
20 | 曹广英. 花生青枯菌响应基因克隆及表达分析[D]. 长春: 吉林农业大学, 2016. |
21 |
Genin S. Molecular traits controlling host range and adaptation to plants in Ralstonia solanacearum [J]. New Phytol, 2010, 187(4): 920-928. DOI:10.1111/j.1469-8137.2010.03397.x .
doi: 10.1111/j.1469-8137.2010.03397.x |
22 | 江高飞. 茄科雷尔氏菌的侵染动态模型及药剂调控效应[D]. 重庆: 西南大学, 2018. |
23 | 廖伯寿, 李文溶, 孙大容. 花生青枯病抗性遗传研究[J]. 中国油料, 1986, 8(3): 3-10. |
24 | Machmud M, Middleton K. Transmission of Pseudomonas solanacearum through groundnut seeds[J].Bacterial Wilt Newsletter.1991(7):4-5. |
25 | 候绪友,王家绍. 土壤物理性状与花生青枯病发病关系的研究[J]. 中国油料, 1980(2): 25-40. |
26 |
郑亚萍, 王才斌, 黄顺之, 等. 花生连作障碍及其缓解措施研究进展[J]. 中国油料作物学报, 2008, 30(3): 384-388. DOI:10.3321/j.issn: 1007-9084.2008.03.023 .
doi: 10.3321/j.issn: 1007-9084.2008.03.023 |
27 |
黎穗临. 广东花生抗青枯病育种研究进展[J]. 花生学报, 2005, 34(2): 30-32. DOI:10.3969/j.issn.1002-4093.2005.02.007 .
doi: 10.3969/j.issn.1002-4093.2005.02.007 |
28 |
Graham J, Lloyd A B. Survival of potato strain (race 3) of Pseudomonas solanacearum in the deeper soil layers[J]. Aust J Agric Res, 1979, 30(3): 489. DOI:10.1071/ar9790489 .
doi: 10.1071/ar9790489 |
29 |
Mariano R L R, Silveira N S S, Michereff S J. Bacterial Wilt in Brazil: Current Status and Control Methods[M]. Bact Wilt Dis, 1998: 386-393. DOI:10.1007/978-3-662-03592-4_59 .
doi: 10.1007/978-3-662-03592-4_59 |
30 |
柳唐镜. 绿亨系列产品防治花生病害的应用效果及使用技术[J]. 中国农技推广, 2001, 17(5): 43. DOI:10.3969/j.issn.1002-381X.2001.05.044 .
doi: 10.3969/j.issn.1002-381X.2001.05.044 |
31 |
Yoshida S, Hiradate S, Tsukamoto T, et al. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves[J]. Phytopathology, 2001, 91(2): 181-187. DOI:10.1094/PHYTO.2001.91.2.181 .
doi: 10.1094/PHYTO.2001.91.2.181 |
32 |
徐圣林. 埇桥区花生常见病害及其防治措施[J]. 安徽农学通报, 2021, 27(4): 99, 154. DOI:10.16377/j.cnki.issn1007-7731.2021.04.039 .
doi: 10.16377/j.cnki.issn1007-7731.2021.04.039 |
33 |
陆济, 游春平, 董章勇. 花生青枯病生防细菌的筛选与鉴定[J]. 广东农业科学, 2019, 46(2): 94-98. DOI:10.16768/j.issn.1004-874X.2019.02.014 .
doi: 10.16768/j.issn.1004-874X.2019.02.014 |
34 | 何礼远, 康耀卫. 利用青枯菌无毒菌株和荧光假单胞菌诱导花生产生抗病性[J]. 植物保护学报, 1990, 17(2): 113-116. |
35 |
蒲小明, 林壁润, 郑奕雄, 等. 一株抗花生青枯病菌海洋放线菌的分类鉴定及其活性产物研究[J]. 广东农业科学, 2011, 38(16): 62-65. DOI:10.16768/j.issn.1004-874x.2011.16.039 .
doi: 10.16768/j.issn.1004-874x.2011.16.039 |
36 |
Wang X B, Liang G B. Control efficacy of an endophytic Bacillus amyloliquefaciens strain BZ6-1 against peanut bacterial wilt, Ralstonia solanacearum [J]. Biomed Res Int, 2014, 2014: 465435. DOI:10.1155/2014/465435 .
doi: 10.1155/2014/465435 |
37 | Schwarz M B, Hartley C. The selection of Schwarz 21, a strain of Arachis hypogaea resistant to Bacterium solanacearum [J]. Landbouw Bogor, 1950(22): 223-244. |
38 | Liao B S, Duan N X, Wang Y Y,et al .Host-plant resistance to groundnut bacterial wilt:genetic diversity and enhancement[C].Groundnut bacterial wilt in Asia:Proceedings of the Third Working Group Meeting,Wuhan,China.Mehan VK,MeDonald D (eds).ICRISAT,Patancheru,India. 1994:91-96. |
39 | 杨光, 李航宇, 陈龙, 等. 抗青枯病花生种质资源的鉴定与筛选[J]. 农学学报, 2021, 11(12): 44-47. |
40 |
马皓, 冯旭东, 吴学文, 等. 高抗青枯病花生新品种鄂花6号的选育与应用[J]. 农业科技通讯, 2009(3): 129-130. DOI:10.3969/j.issn.1000-6400.2009.03.062 .
doi: 10.3969/j.issn.1000-6400.2009.03.062 |
41 |
吴昌湛, 陈庆政, 韦汉文, 等. 高抗青枯病花生新品种贺油14的选育[J]. 花生学报, 2015, 44(3): 67-68. DOI:10.14001/j.issn.1002-4093.2015.03.013 .
doi: 10.14001/j.issn.1002-4093.2015.03.013 |
42 |
汤丰收, 张新友, 董文召, 等. 优质抗病花生新品种豫花14号的选育与利用[J]. 花生科技, 2001, 30(2): 17-18. DOI:10.3969/j.issn.1002-4093.2001.02.006 .
doi: 10.3969/j.issn.1002-4093.2001.02.006 |
43 |
高忠奎, 蒋菁, 韩柱强, 等. 抗青枯病高产花生新品种桂花39的选育及栽培技术[J]. 江苏农业科学, 2021, 49(13): 74-78. DOI:10.15889/j.issn.1002-1302.2021.13.014 .
doi: 10.15889/j.issn.1002-1302.2021.13.014 |
44 |
殷冬梅. 高产高抗青枯病花生新品种农大花108[J]. 中国种业, 2020(11): 117-118. DOI:10.19462/j.cnki.1671-895x.2020.11.039 .
doi: 10.19462/j.cnki.1671-895x.2020.11.039 |
45 | 陈茹艳, 陈剑洪, 郭陞垚, 等. 抗青枯病花生新品种‘泉花27’的选育[J]. 农学学报, 2017, 7(8): 25-28. |
46 |
马皓, 冯旭东, 徐东华, 等. 高抗青枯病花生新品种鄂花7号的选育与应用[J]. 现代农业, 2016(9): 39-40. DOI:10.14070/j.cnki.15-1098.2016.09.031 .
doi: 10.14070/j.cnki.15-1098.2016.09.031 |
47 |
姜慧芳, 陈本银, 任小平, 等. 利用重组近交系群体检测花生青枯病抗性SSR标记[J]. 中国油料作物学报, 2007, 29(1): 26-30. DOI:10.3321/j.issn: 1007-9084.2007.01.005 .
doi: 10.3321/j.issn: 1007-9084.2007.01.005 |
48 |
任小平, 姜慧芳, 廖伯寿. 花生抗青枯病分子标记研究[J]. 植物遗传资源学报, 2008, 9(2): 163-167. DOI:10.13430/j.cnki.jpgr.2008.02.006 .
doi: 10.13430/j.cnki.jpgr.2008.02.006 |
49 |
洪彦彬, 温世杰, 钟旎, 等. SSR标记与花生青枯病、锈病抗性的相关性研究[J]. 广东农业科学, 2011, 38(S1): 61-63. DOI:10.16768/j.issn.1004-874x.2011.s1.019 .
doi: 10.16768/j.issn.1004-874x.2011.s1.019 |
50 |
徐志军, 任小平, 黄莉, 等. 花生青枯病抗性相关SSR标记的筛选鉴定[J]. 中国油料作物学报, 2015, 37(6): 803-810. DOI:10.7505/j.issn.1007-9084.2015.06.010 .
doi: 10.7505/j.issn.1007-9084.2015.06.010 |
51 |
Luo H Y, Pandey M K, Khan A W, et al. Next-generation sequencing identified genomic region and diagnostic markers for resistance to bacterial wilt on chromosome B02 in peanut (Arachis hypogaea L.)[J]. Plant Biotechnol J, 2019, 17(12): 2356-2369. DOI:10.1111/pbi.13153 .
doi: 10.1111/pbi.13153 |
52 |
Qi F Y, Sun Z Q, Liu H, et al. QTL identification, fine mapping, and marker development for breeding peanut (Arachis hypogaea L.) resistant to bacterial wilt[J]. Theor Appl Genet, 2022, 135(4): 1319-1330. DOI:10.1007/s00122-022-04033-y .
doi: 10.1007/s00122-022-04033-y |
53 | 彭文舫, 姜慧芳, 任小平, 等. 花生AFLP遗传图谱构建及青枯病抗性QTL分析[J]. 华北农学报, 2010, 25(6): 81-86. |
54 |
Zhao Y L, Zhang C, Chen H, et al. QTL mapping for bacterial wilt resistance in peanut (Arachis hypogaea L.)[J]. Mol Breed, 2016, 36: 13. DOI:10.1007/s11032-015-0432-0 .
doi: 10.1007/s11032-015-0432-0 |
55 |
Wang L F, Zhou X J, Ren X P, et al. A major and stable QTL for bacterial wilt resistance on chromosome B02 identified using a high-density SNP-based genetic linkage map in cultivated peanut yuanza 9102 derived population[J]. Front Genet, 2018, 9: 652. DOI:10.3389/fgene.2018.00652 .
doi: 10.3389/fgene.2018.00652 |
56 |
Luo H Y, Pandey M K, Zhi Y, et al. Discovery of two novel and adjacent QTLs on chromosome B02 controlling resistance against bacterial wilt in peanut variety Zhonghua 6[J]. Theor Appl Genet, 2020, 133(4): 1133-1148. DOI:10.1007/s00122-020-03537-9 .
doi: 10.1007/s00122-020-03537-9 |
57 |
彭文舫, 吕建伟, 任小平, 等. 花生抗青枯病相关基因的差异表达[J]. 遗传, 2011, 33(4): 387-396. DOI:10.3724/SP.J.1005.2011.00389 .
doi: 10.3724/SP.J.1005.2011.00389 |
58 | 吕建伟, 姜慧芳, 黄家权, 等. 青枯菌诱导的花生基因表达谱SSH分析[J]. 西北植物学报, 2011, 31(8): 1517-1523. |
59 |
张欢, 罗怀勇, 李威涛, 等. 花生全基因组抗病基因鉴定及其对青枯菌侵染的响应分析[J]. 作物学报, 2021, 47(12): 2314-2323. DOI:10.3724/SP.J.1006.2021.04266 .
doi: 10.3724/SP.J.1006.2021.04266 |
[1] | Min-jie GUO, Li DENG, Yu-rong Li, Jin WANG, Li REN. Comprehensive evaluation of Jihua peanut varieties with high oleic acid based on principal component and cluster analysis [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1210-1217. |
[2] | Qi-qi DONG, Yang YUAN, Qi DU, Zhen-hua LIU, Xiao-long SHI, Ke-zhao ZHANG, Dong-ying ZHOU, Xu YANG, Xiao-guang WANG, Chun-ji JIANG, Xi-bo LIU, Feng GUO, Xin-hua ZHAO, Hai-qiu YU. Effects of strip intercropping of maize and peanut on nitrogen uptake and soil microbial community diversity [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1296-1306. |
[3] | Zhong-sheng CAO, Yan-da LI, Jun-bao HUANG, Bin-feng SUN, Chun YE, Shi-fu SHU, Luo-fa WU, Yong-chao TIAN. Sensitive vegetation indices and optimal bandwidths for monitoring peanut LAI and AGB [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1320-1328. |
[4] | Jia-ning LIANG, Jun ZHANG, Le-zeng TAN, Song-nan YANG, Xue-ying LI, Dan YAO, Liang-yu CHEN, Qiu-lin WU, Yong-yi XING, Xiao HAN. Transcriptome analysis of peanut protein mutants at different seed development stages [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 1018-1029. |
[5] | Ting XU, Yan-tao LIU, Hai-jiang WANG, Qiang LI, Peng WANG, Hong-ye DONG. Effects of saline-alkali stress on germination characteristics of peanut seeds and comprehensive identification and evaluation of salt damage [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 1037-1047. |
[6] | Liang-qiang CHENG, Jian-bin GUO, Wei-tao LI, Li HUANG, Huai-yong LUO, Nian LIU, Xiao-jing ZHOU, Wei-gang CHEN, Jun WANG, Jian-wei LYU, Ting-hui HU, Qing-lin RAO, Yong LEI, Bo-shou LIAO, Hui-fang JIANG. Novel genotypes and quantitative trait locus for rust resistance in peanut [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 1074-1080. |
[7] | Hong-chang JI, Xiao-chen QIU, Wen-hao LIU, Chang-li HU, Ming KONG, Xiao-hui HU, Jian-bin HUANG, Xue YANG, Yan-yan TANG, Xiao-jun ZHANG, Jing-shan WANG, Li-xian QIAO. Construction and application of near infrared ray model for oil content prediction in peanut kernel [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 1089-1097. |
[8] | Chao MA, Miao-xin GUO, Sheng-nan MA, Yue WANG, Yu-tian SUN, Da-wei XIN, Qing-shan CHEN, Jin-hui WANG. Construction of HH103ΩNopAAΩNopD and effect of mutation on nodulation ability of soybean rhizobium [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 989-995. |
[9] | Yong-ping XIE, Yun-huan ZHENG, Ying-duo GUO, Zhao-cong CHEN. The first report on one haploid plant in cultivated peanut using anther culture technique [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 810-817. |
[10] | Bei WU, Nian LIU, Li HUANG, Huai-yong LUO, Xiao-jing ZHOU, Wei-gang CHEN, Jian-bin GUO, Dong-xin HUAI, You-lin XIA, Yong LEI, Bo-shou LIAO, Hui-fang JIANG. Identification of markers stably associated with different fatty acid content in peanut through association analysis [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 818-825. |
[11] | Xiao-tian ZHANG, Yi-wei FU, Wen-li JIAO, Jing-zi PIAO, Yang LI, Zi-bo LI, Ru-jun ZHOU. Whole genome PKS gene cluster mining and bioinformatics analysis of toxin biosynthesis gene ESCB1 in Elsinoë arachidis [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 826-832. |
[12] | Xue-feng SHEN, Wen-tao LU, Yong CHEN. Aluminum stress on root metabolism of peanutbased on metabolomics of UPLC-MS/MS [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 833-844. |
[13] | Ming LI, Hui CAO, Rui-rui XU. Ectopic expression of peanut AhMYB113 gene enhances anthocyanin accumulation in tobacco [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 845-851. |
[14] | Rui YAO, Kai-neng ZHAO, Chang XIE, Hai-ling SONG, Shuang XU, Hai-qiu YU, Zheng ZHANG, Jing WANG, Chun-ji JIANG, Shu-li ZHAO, Xiao-guang WANG. Effects of postponing nitrogen application on nitrogen enzyme activities, nitrogen utilization efficiency and yield in peanut [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 877-883. |
[15] | Hao ZHANG, Zhen-hong LIU, Ning-bo ZENG, Kang TANG, Zi-nan LUO, Deng-wang LIU, Lin LI. Effects of waterlogging stress on root morphological characteristics and anatomical structure of peanut varieties with different tolerance [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 884-892. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||