CHINESE JOURNAL OF OIL CROP SCIENCES ›› 2021, Vol. 43 ›› Issue (6): 947-960.doi: 10.19802/j.issn.1007-9084.2021300
Yang ZHOU(), Xiao-feng YUE(
), Xiao-qian TANG, Hong-lin YAN, Qi ZHANG(
), Pei-wu LI(
)
Received:
2021-11-30
Online:
2021-12-22
Published:
2021-12-22
Contact:
Qi ZHANG,Pei-wu LI
E-mail:zhouyang01@caas.cn;yuexf2017@caas.cn;zhangqi01@caas.cn;peiwuli@oilcrops.cn;zhangqi01@caas.cn
CLC Number:
Yang ZHOU, Xiao-feng YUE, Xiao-qian TANG, Hong-lin YAN, Qi ZHANG, Pei-wu LI. A preliminary study on the coupling effect of aflatoxin green control and super-nodulation[J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(6): 947-960.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jouroilcrops.cn/EN/10.19802/j.issn.1007-9084.2021300
Table 1
The control effect of ARC-BBBE on peanut aflatoxin
试验区 Experimental field | AFT阳性样品率 Rate of AFT positive samples / % | AFB1超标样品率 Excess rate of AFB1 in samples / % | AFT含量平均值 Average value of AFT concentration / (μg/kg) | AFT含量范围 Range of AFT concentration / (μg/kg) |
---|---|---|---|---|
对照 CK | 6.84 | 4.11 | 53.68±397.04 | ND~3698.73 |
处理 Treatment | 4.31 | 1.43 | 8.82±43.34 | ND~441.82 |
Fig. 5
Field photos of super-nodulation of peanut root induced by ARC-BBBENote: A: Nodulation of peanut roots in the control group of Fuxin demonstration base in Liaoning Province; B: Nodulation of peanut roots in the biocontrol agent treatment group at Fuxin demonstration base in Liaoning Province; C: Nodulation of peanut roots in the control group of Zhengyang demonstration base in Henan Province; D: Nodulation of peanut roots in the biocontrol agent treatment group in Zhengyang demonstration base in Henan Province
Table 2
Effects of ARC-BBBE on the biological characteristics of peanuts in a pot experiment in a greenhouse
性状 Item | 对照 CK | 处理 Treatment |
---|---|---|
瘤数 (个) Nodule number /pcs | 91.00±23.29 | 198.33±37.16 |
瘤重Nodule weight/g | 0.19±0.04 | 0.33±0.05 |
每克根瘤酶活 Nitrogenase activity per gram of nodule/(μmol/h) | 0.92±0.70 | 2.70±0.89 |
单株酶活 Nitrogenase activity per plant /(μmol/h) | 0.21±0.16 | 0.84±0.21 |
根重Root weight /g | 3.52±0.65 | 4.03±0.53 |
根长Root length /cm | 20.67±3.71 | 28.33±1.67 |
株高Plant height /cm | 16.83±0.78 | 14.97±0.26 |
整株鲜重Plant fresh weight /g | 27.54±0.70 | 23.35±1.56 |
地上鲜重Aboveground fresh weight /g | 19.80±2.77 | 18.42±1.17 |
叶绿素/SPAD Chlorophyll content (SPAD) | 41.40±0.57 | 50.20±0.39 |
Fig. 9
ARC-BBBE promotes peanut root nodulation in a pot experiment in greenhouseNote: The 26th day after sowing (5-6 compound leaf period), the application of ARC-BBBE induced super-nodulation in peanuts, and the number of peanut roots nodules in the treatment group was significantly higher than that in the control group
Table 3
Effect of ARC-BBBE on the biological characteristics of soybean in the greenhouse pot experiment
性状 Item | 对照 CK | 处理 Treatment |
---|---|---|
瘤数 (个) Nodule number /pcs | 4.50±3.50 | 65.50±4.50 |
瘤重Nodule weight/g | 0.01±0.01 | 0.208±0.09 |
每克根瘤酶活 Nitrogenase activity per gram of nodule/(μmol/h) | 0.00±0.00 | 1.695±1.70 |
单株酶活 Nitrogenase activity per plant /(μmol/h) | 0.00±0.00 | 0.509±0.51 |
根重Root weight /g | 3.28±0.19 | 5.75±0.07 |
根长Root length /cm | 22.50±0.50 | 26.00±1.00 |
株高Plant height /cm | 29.35±1.85 | 39.55±1.65 |
整株鲜重Plant fresh weight /g | 11.87±1.15 | 15.72±1.85 |
地上鲜重Aboveground fresh weight /g | 8.19±0.57 | 11.19±1.67 |
叶绿素/SPAD Chlorophyll content (SPAD) | 35.63±1.96 | 37.63±1.32 |
Fig. 10
Effect of ARC-BBBE on promoting soybean root nodulation in the seedling stage in a pot experimentNote: Sampling was taken on the 26th day after sowing (4-5 leaf stage). A: Use ARC-BBBE to promote the growth of soybean above ground. B: Applying ARC-BBBE to promote the growth of soybean aerial parts. C: Application of ARC-BBBE promotes nodulation of soybean roots
1 |
Smith L E, Prendergast A J, Turner P C, et al. Aflatoxin exposure during pregnancy, maternal Anemia, and adverse birth outcomes[J]. Am J Trop Med Hyg, 2017, 96(4): 770-776. DOI:10.4269/ajtmh.16-0730.
doi: 10.4269/ajtmh.16-0730 |
2 |
Simmonds M S J. IARC monographs on the evaluation of carcinogenic risks to humans. vol. 82, some traditional herbal medicines, some mycotoxins, naphthalene and styrene[J]. Phytochemistry, 2004, 65(1): 139. DOI:10.1016/j.phytochem.2003.09.007.
doi: 10.1016/j.phytochem.2003.09.007 |
3 |
Mitchell N J, Bowers E, Hurburgh C, et al. Potential economic losses to the US corn industry from aflatoxin contamination[J]. Food Addit Contam Part A Chem Anal Control Expo Risk Assess, 2016, 33(3): 540-550. DOI:10.1080/19440049.2016.1138545.
doi: 10.1080/19440049.2016.1138545 |
4 | Wu L X, Ding X X, Li P W, et al. Aflatoxin contamination of peanuts at harvest in China from 2010 to 2013 and its relationship with climatic conditions[J]. Food Control, 2016, 60: 117-123. |
5 |
Ding X, Wu L, Li P, et al. Risk assessment on dietary exposure to aflatoxin B₁ in post-harvest peanuts in the Yangtze River ecological region[J]. Toxins: Basel, 2015, 7(10): 4157-4174. DOI:10.3390/toxins7104157.
doi: 10.3390/toxins7104157 |
6 | 李培武, 丁小霞, 白艺珍, 等. 农产品黄曲霉毒素风险评估研究进展[J]. 中国农业科学, 2013, 46: 2534-2542. |
7 |
Jallow A, Xie H L, Tang X Q, et al. Worldwide aflatoxin contamination of agricultural products and foods: From occurrence to control[J]. Compr Rev Food Sci Food Saf, 2021, 20(3): 2332-2381. DOI:10.1111/1541-4337.12734.
doi: 10.1111/1541-4337.12734 |
8 |
Mwakinyali S E, Ding X X, Ming Z, et al. Recent development of aflatoxin contamination biocontrol in agricultural products[J]. Biol Control, 2019, 128: 31-39. DOI:10.1016/j.biocontrol.2018.09.012.
doi: 10.1016/j.biocontrol.2018.09.012 |
9 |
王晓伟, 高鹏飞, 姚国强, 等. 乳酸菌对乳制品中黄曲霉毒素的生物防治作用[J]. 中国乳品工业, 2015, 43(3): 42-45, 49. DOI:10.3969/j.issn.1001-2230.2015.03.011.
doi: 10.3969/j.issn.1001-2230.2015.03.011 |
10 |
El-Nezami H, Mykkänen H, Kankaanpää P, et al. Ability of Lactobacillus and Propionibacterium strains to remove aflatoxin B1 from the chicken duodenum[J]. J Food Prot, 2000, 63(4): 549-552. DOI:10.4315/0362-028x-63.4.549.
doi: 10.4315/0362-028x-63.4.549 |
11 |
Pierides M, El-Nezami H, Peltonen K, et al. Ability of dairy strains of lactic acid bacteria to bind aflatoxin M1 in a food model[J]. J Food Prot, 2000, 63(5): 645-650. DOI:10.4315/0362-028x-63.5.645.
doi: 10.4315/0362-028x-63.5.645 |
12 |
Nesci A V, Bluma R V, Etcheverry M G. In vitro selection of maize rhizobacteria to study potential biological control of Aspergillus section flavi and aflatoxin production[J]. Eur J Plant Pathol, 2005, 113(2): 159-171. DOI:10.1007/s10658-005-5548-3.
doi: 10.1007/s10658-005-5548-3 |
13 |
Yang X, Zhang Q, Chen Z Y, et al. Investigation of Pseudomonas fluorescens strain 3JW1 on preventing and reducing aflatoxin contaminations in peanuts[J]. PLoS One, 2017, 12(6): e0178810. DOI:10.1371/journal.pone.0178810.
doi: 10.1371/journal.pone.0178810 |
14 |
Ehrlich K C, Moore G G, Mellon J E, et al. Challenges facing the biological control strategy for eliminating aflatoxin contamination[J]. World Mycotoxin J, 2015, 8(2): 225-233. DOI:10.3920/wmj2014.1696.
doi: 10.3920/wmj2014.1696 |
15 |
Mauro A, Garcia-Cela E, Pietri A, et al. Biological control products for aflatoxin prevention in Italy: commercial field evaluation of atoxigenic Aspergillus flavus active ingredients[J]. Toxins, 2018, 10(1): 30. DOI:10.3390/toxins10010030.
doi: 10.3390/toxins10010030 |
16 |
Vijayakumar R, Aboody M, Alturaiki W, et al. A study of airborne fungal allergens in sandstorm dust in Al-Zulfi, Central region of Saudi Arabia[J]. J Environ Occup Sci, 2017, 6(1): 27. DOI:10.5455/jeos.20170120094512.
doi: 10.5455/jeos.20170120094512 |
17 |
Ehrlich KC. Non-aflatoxigenic Aspergillus flavus to prevent aflatoxin contamination in crops: advantages and limitations [J]. Front Microbiol,2014,5(1): 50. DOI:10.3389/fmicb.2014.00050.
doi: 10.3389/fmicb.2014.00050 |
18 |
邢福国, 李旭, 张晨曦. 黄曲霉毒素的产生机制及污染防控策略[J]. 食品科学技术学报, 2021, 39(1): 13-26, 64. DOI:10.12301/j.issn.2095-6002.2021.01.002.
doi: 10.12301/j.issn.2095-6002.2021.01.002 |
19 |
宫小明, 马荣桧, 孙军, 等. 黄曲霉毒素生物防控菌的筛选及鉴定[J]. 微生物学杂志, 2015, 35(2): 103-108. DOI:10.3969/j.issn.1005-7021.2015.02.019.
doi: 10.3969/j.issn.1005-7021.2015.02.019 |
20 |
白艺珍, 张奇, 李培武. 油料作物主要生物毒素发生危害与检测控制研究[J]. 农产品质量与安全, 2020(6): 7-12, 48. DOI:10.3969/j.issn.1674-8255.2020.06.002.
doi: 10.3969/j.issn.1674-8255.2020.06.002 |
21 | 李雪, 王督, 白艺珍, 等. 我国油料产品品质的近红外光谱快速检测技术研究进展[J]. 分析测试学报, 2020, 39(10): 1189-1195. |
22 |
钟喆栋, 曾小波, 李友国. ACC脱氨酶对大豆快生根瘤菌及苜蓿中华根瘤菌共生固氮与竞争结瘤的影响[J]. 华中农业大学学报, 2019, 38(1): 28-34. DOI:10.13300/j.cnki.hnlkxb.2019.01.005.
doi: 10.13300/j.cnki.hnlkxb.2019.01.005 |
23 |
沈世华, 荆玉祥. 中国生物固氮研究现状和展望[J]. 科学通报, 2003, 48(6): 535-540. DOI:10.3321/j.issn: 0023-074X.2003.06.003.
doi: 10.3321/j.issn: 0023-074X.2003.06.003 |
24 |
Yao Y P, Gao S Y, Ding X X, et al. Topography effect on Aspergillus flavus occurrence and aflatoxin B1 contamination associated with peanut[J]. Curr Res Microb Sci, 2021, 2: 100021. DOI:10.1016/j.crmicr.2021.100021.
doi: 10.1016/j.crmicr.2021.100021 |
25 |
Xie H L, Jallow A, Yue X F, et al. Aspergillusflavus's response to antagonism bacterial stress sheds light on a regulation and metabolic trade-off mechanism for adversity survival[J]. J Agric Food Chem, 2021, 69(16): 4840-4848. DOI:10.1021/acs.jafc.0c07665.
doi: 10.1021/acs.jafc.0c07665 |
26 | 张奇,岳晓凤,白艺珍,等. 一步式高效筛选黄曲霉毒素防控菌的筛选方法及其应用,CN2021106537744。 |
27 | 张奇,李培武,岳晓凤,唐晓倩,周扬,白艺珍. 一种兼具黄曲霉毒素及其产毒菌防控与促进作物增产的微生物菌剂及其应用,CN2021112170516。 |
28 | 李培武,姚彦坡,丁小霞,张奇,张文. 路德维希肠杆菌BG10-1及其在黄曲霉菌生物防治中的应用,ZL 2016101558989。 |
29 | 李培武,岳晓凤,张奇,等. 一种促进豆科作物增加根瘤数量与根瘤固氮酶活性的微生物菌剂及其应用,CN 202111344653.8。 |
30 |
张杏, 岳晓凤, 丁小霞, 等. 中国西南花生产区黄曲霉菌分布、产毒力及花生黄曲霉毒素污染[J]. 中国油料作物学报, 2019, 41(5): 773-780. DOI:10.19802/j.issn.1007-9084.2018242.
doi: 10.19802/j.issn.1007-9084.2018242 |
31 |
Vessey J K. Measurement of nitrogenase activity in legume root nodules: In defense of the acetylene reduction assay[J]. Plant Soil, 1994, 158(2): 151-162. DOI:10.1007/BF00009490.
doi: 10.1007/BF00009490 |
32 |
赵卫松, 郭庆港, 张晓云, 等. 解淀粉芽胞杆菌PHODG36菌剂的研制及其对马铃薯黄萎病的防病增产效果[J]. 中国生物防治学报, 2020, 36(3): 381-387. DOI:10.16409/j.cnki.2095-039x.2020.03.014.
doi: 10.16409/j.cnki.2095-039x.2020.03.014 |
33 |
李智高, 毛永杨, 狄朋敏, 等. 食品中黄曲霉毒素的降解方法的研究进展[J]. 食品安全质量检测学报, 2019, 10(14): 4597-4602. DOI:10.3969/j.issn.2095-0381.2019.14.025.
doi: 10.3969/j.issn.2095-0381.2019.14.025 |
34 |
Nešić K, Habschied K, Mastanjević K. Possibilities for the biological control of mycotoxins in food and feed[J]. Toxins, 2021, 13(3): 198. DOI:10.3390/toxins13030198.
doi: 10.3390/toxins13030198 |
35 |
Wang J X, Xie Y L. Review on microbial degradation of Zearalenone and aflatoxins[J]. Grain Oil Sci Technol, 2020, 3(3): 117-125. DOI:10.1016/j.gaost.2020.05.002.
doi: 10.1016/j.gaost.2020.05.002 |
36 |
Wei Y K, Zhao X M, Li M M, et al. Detoxification of aflatoxins on prospective approach: effect on structural, mechanical, and optical properties under pressures[J]. Interdiscip Sci: Comput Life Sci, 2018, 10(2): 311-319. DOI:10.1007/s12539-017-0278-8.
doi: 10.1007/s12539-017-0278-8 |
37 |
Ryu C M, Farag M A, Hu C H, et al. Bacterial volatiles promote growth in Arabidopsis[J]. PNAS, 2003, 100(8): 4927-4932. DOI:10.1073/pnas.0730845100.
doi: 10.1073/pnas.0730845100 |
38 |
Idriss E E, Makarewicz O, Farouk A, et al. Extracellular phytase activity of Bacillus amyloliquefaciens FZB45 contributes to its plant-growth-promoting effect[J]. Microbiology: Reading, 2002, 148(pt 7): 2097-2109. DOI:10.1099/00221287-148-7-2097.
doi: 10.1099/00221287-148-7-2097 |
39 |
杨晓云, 陈志谊, 蒋盼盼, 等. 解淀粉芽孢杆菌B1619对番茄的促生作用[J]. 中国生物防治学报, 2016, 32(3): 349-356. DOI:10.16409/j.cnki.2095-039x.2016.03.010.
doi: 10.16409/j.cnki.2095-039x.2016.03.010 |
40 |
乔俊卿, 刘邮洲, 余翔, 等. 集成生物防治和秸秆还田技术对设施番茄增产及土传病害防控效果研究[J]. 中国生物防治学报, 2013, 29(4): 547-554. DOI:10.16409/j.cnki.2095-039x.2013.04.012.
doi: 10.16409/j.cnki.2095-039x.2013.04.012 |
41 |
乔俊卿, 刘邮洲, 夏彦飞, 等. 生防菌B1619在番茄根部的定殖及对根际微生态的影响[J]. 植物保护学报, 2013, 40(6): 507-511. DOI:10.13802/j.cnki.zwbhxb.2013.06.004.
doi: 10.13802/j.cnki.zwbhxb.2013.06.004 |
42 |
孙小涵, 孙洪浩, 陈秀秀, 等. 一株具有抑菌活性的芽孢杆菌的分离鉴定及生物特性研究[J]. 饲料研究, 2020, 43(8): 80-85. DOI:10.13557/j.cnki.issn1002-2813.2020.08.019.
doi: 10.13557/j.cnki.issn1002-2813.2020.08.019 |
43 |
杨合同, 唐文华, 迟建国, 等. 植病生防菌株B1301的种类鉴定及其对生姜青枯病的作用机理和防治效果[J]. 中国生物防治, 2002, 18(1): 21-24. DOI:10.16409/j.cnki.2095-039X.2002.01.006.
doi: 10.16409/j.cnki.2095-039X.2002.01.006 |
[1] | Wei-ming ZENG, Yan-zhu SU, Zhen-guang LAI, Shou-zhen YANG, Huai-zhu CHEN, Yu-rong TAN, Zu-dong SUN, Jun-yi GAI. Identification of candidate gene controlling shade-tolerant by BSA-Seq in soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(6): 1006-1015. |
[2] | Yi-qiang HAN, Ya-mei GAO, Yan-li DU, Yu-xian ZHANG, Ji-dao DU, Wen-hui ZHANG, Shao-yu PAN. Identification of saline-alkali tolerant germplasm resources of soybean during the whole growth stage [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(6): 1016-1024. |
[3] | Feng-gao CUI, Xiao-hui HU, Hua-rong MIAO, Sheng-zhong ZHANG, Juan WANG, Song WANG, Gang HOU, Jie SUI, Jian-cheng ZHANG, Jing CHEN. QTL mapping for 100-pod and 100-seed weights in cultivated peanut [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(6): 1025-1030. |
[4] | Jian-wei LYU, Min JIANG, Yong-guo TIAN, Ting-hui HU, Liang-qiang CHENG, Qing-lin RAO, Jin-hua WANG, Jun WANG. Analysis on nutrients and comprehensive feeding evaluation of peanut plant [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(6): 1031-1041. |
[5] | Kang CHEN. Effect of density and nitrogen fertilizer on SPAD, plant and pod yield characteristics under single seed planting in peanut [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(6): 1070-1076. |
[6] | Jian-qiu LIANG, Xiao-bo YU, Ze-min HE, Jian-gang AN, Jia WANG, Zhao-qiong ZENG, Wen-ying YANG, Hai-ying WU, Ming-rong ZHANG. Comparative study on the agronomic traits and yield of soybean varieties with different maturity in maize-soybean intercropping system [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(6): 1077-1086. |
[7] | Ju-xiang WU, Man-lin XU, Xia ZHANG, Jing YU, Zhi-qing GUO, Ying LI, Xin-ying SONG, Kang HE, Xin-guo LI, Ru-jun ZHOU, Yu-cheng CHI, Shu-bo WAN. Evaluation of resistance of Shandong peanut varieties to Sphaceloma arachidis [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(6): 1126-1131. |
[8] | Dong-xin HUAI, Jie WU, Xiao-meng XUE, Fang LIU, Mei-ling HU, Li-ying YAN, Yu-ning CHEN, Xin WANG, Yan-ping KANG, Zhi-hui WANG, Nian LIU, Hui-fang JIANG, Yong LEI, Bo-shou LIAO. Development of a portable instrument for identifying high oleate peanut [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(6): 1150-1158. |
[9] | Ji-liang WANG, Chun-mei ZONG, De-liang WANG, Yan-ping WANG, Hong-xin JIANG, Dan-xia YANG, Meng-meng FU, Lei WANG, Hai-xiang REN, Tuan-jie ZHAO, Wei-guang DU, Jun-yi GAI. Identification, evaluation and improvement utilization of northeast China Soybean Germplasm Population in Jiamusi [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(6): 996-1005. |
[10] | XIE Chang, DANG Xian-shi, LIU Na, YAO Rui, YU Hai-qiu, WANG Jing, JIANG Chun-ji, ZHAO Xin-hua, WANG Xiao-guang. Quality formation characteristic of peanut varieties with different grain types [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(5): 795-. |
[11] | XU Jing, PAN Li-juan, CHEN Na, WANG Tong, CHEN Ming-na, WANG Mian, YU Shan-lin, DING Hong, SUN Wei, ZHAO Xiao-dong, CHI Xiao-yuan. Pods mechanical property of different peanuts and identification of elite varieties(lines) [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(5): 803-. |
[12] | CHEN Na, PAN Li-juan, CHEN Ming-na, WANG Tong, XU Jing, WANG Zi-qiang, YANG Zhen, XIE Hong-feng, ZOU Zong-feng, HUANG Xiang, HUANG Hui-wen, YU Shan-lin, CHI Xiao-yuan. Sequence and expression analysis of DREB transcription factor gene AhDREB3 in peanut under abiotic stress [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(5): 816-. |
[13] | YANG Yong-qing, CHEN Sheng-nan, LI Xin-xin, ZHAO Qing-song, FU Ya-shu, YANG Chun-Yan, ZHANG Meng-chen, LIAO Hong. Genetic analysis and QTL mapping of soybean leaf shape under rhizobia inoculated environment [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(5): 825-. |
[14] | XU Ying, YU Zhen-hua, LI Yan-sheng, JIN Jian, WANG Guang-hua, LIU Xiao-bing. Impact of elevated atmospheric CO2 concentration on carbohydrate accumulation in different organs of soybean plant [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(5): 859-. |
[15] | WANG Hua-mei, REN Chun-yuan, JIN Xi-jun, WANG Xue-meng, CAO Liang, ZHANG Ming-cong, ZHAO Qiang, YU Gao-bo, ZHANG Yu-xian . Effects of exogenous melatonin on nitrogen metabolism and growth of soybean under high nitrogen [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(5): 872-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||