CHINESE JOURNAL OF OIL CROP SCIENCES ›› 2023, Vol. 45 ›› Issue (1): 164-174.doi: 10.19802/j.issn.1007-9084.2021322
Previous Articles Next Articles
Xin-long SHI1,2(), Yue-qin YANG1(
), Suo-yi HAN2, Xian XUE1, Jun-jia GUO2, Ya-qi WANG2, Xin-you ZHANG1,2(
)
Received:
2021-12-22
Online:
2023-02-25
Published:
2023-03-03
Contact:
Yue-qin YANG,Xin-you ZHANG
E-mail:975184724@qq.com;yyqyxf@126.com;haasxinyou@163.com
CLC Number:
Xin-long SHI, Yue-qin YANG, Suo-yi HAN, Xian XUE, Jun-jia GUO, Ya-qi WANG, Xin-you ZHANG. Effects of chitooligosaccharide soaking on germination and physiological metabolism of peanut seeds[J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2023, 45(1): 164-174.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jouroilcrops.cn/EN/10.19802/j.issn.1007-9084.2021322
Table 1
Experimental treatment settings
处理缩写 Abbreviation | 处理名称 Treatment |
---|---|
CK0 | 常温(25℃)对照处理 CK0 |
LT0/CK | 低温(15℃)对照处理CK Low temperature (LT, CK) |
LT1 | 低温处理+ 50 mg/L COS (LT+ 50 mg/L COS) |
LT2 | 低温处理+ 100 mg/L COS (LT+ 100 mg/L COS) |
LT3 | 低温处理+ 150 mg/L COS (LT+ 150 mg/L COS) |
LT4 | 低温处理+ 200 mg/L COS (LT+ 200 mg/L COS) |
LT5 | 低温处理+ 250 mg/L COS (LT+ 250 mg/L COS) |
LT6 | 低温处理+ 300 mg/L COS (LT+ 300 mg/L COS) |
LT7 | 低温处理+ 350 mg/L COS (LT+ 350 mg/L COS) |
Table 2
Effects on PSWRBT of peanut seeds soaked with different concentrations of COS
处理Treat. | 露白率 Percentage of seeds with radicals breaking through testa /% | ||||||
---|---|---|---|---|---|---|---|
1 d | 2 d | 3 d | 4 d | 5 d | 6 d | 7 d | |
CK0 | 41.11±6.94a | 91.11±3.85a | 97.78±1.92a | 100.00±0.00a | 100.00±0.00a | 100.00±0.00a | 100.00±0.00a |
LT0 | 0.00±0.00d | 10.00±3.33d | 30.00±6.67f | 72.22±3.85d | 90.00±5.77c | 91.11±3.85b | 91.11±3.84b |
LT1 | 0.00±0.00d | 13.33±3.34d | 46.67±3.34e | 73.33±5.77d | 91.11±1.92c | 91.11±1.92b | 91.11±1.92b |
LT2 | 0.00±0.00d | 22.22±1.92c | 57.78±5.09de | 88.89±5.09bc | 94.45±3.85ab | 95.56±1.93ab | 95.56±1.93ab |
LT3 | 3.33±3.34cd | 35.56±1.93b | 82.22±3.85b | 88.89±7.70bc | 92.22±5.09c | 94.45±6.94ab | 94.45±6.94ab |
LT4 | 3.33±0.00cd | 31.11±10.18b | 68.89±10.71cd | 90.00±0.00abc | 91.11±1.92c | 94.44±1.93ab | 94.44±1.93ab |
LT5 | 5.56±1.93c | 33.34±5.77b | 86.67±8.82ab | 95.56±5.09ab | 96.67±3.34ab | 96.67±3.34ab | 96.67±3.34ab |
LT6 | 7.78±1.92bc | 37.78±6.94b | 83.33±8.82b | 95.56±1.93ab | 96.67±0.00ab | 96.67±0.00ab | 96.67±0.00ab |
LT7 | 12.22±1.92b | 35.56±1.93b | 75.55±3.85bc | 84.44±10.18c | 92.22±5.09c | 92.22±5.09b | 92.22±5.09b |
Table 3
Effects of COS immersion on germination ability of peanut seeds
处理 Treat. | 发芽率 /% Germination rate | 相对发芽率 /% Relative germination rate | 发芽指数 Germination index | 种子活力指数 Seed vigor index | 根长胁迫指数 Root length stress index |
---|---|---|---|---|---|
CK0 | 100.00±0.00a | 100.00±0.00a | 27.93±1.57a | 225.60±3.78a | 100.00±4.95a |
CK/LT0 | 3.33±3.33f | 3.33±3.33f | 0.20±0.23d | 0.32±0.41e | 12.64±11.21e |
LT1 | 4.44±1.92f | 4.44±1.92f | 0.26±0.20d | 0.29±0.21e | 14.25±0.72e |
LT2 | 13.33±3.33e | 13.33±3.33e | 1.09±0.07d | 1.65±0.03e | 18.70±1.30e |
LT3 | 20.00±5.77e | 20.00±5.77e | 1.85±0.30cd | 3.34±0.45e | 22.41±1.17e |
LT4 | 34.44±5.09d | 34.44±5.09d | 3.29±0.38c | 8.88±2.74d | 32.83±6.93d |
LT5/COS | 47.78±5.09b | 47.78±5.09b | 5.79±0.61b | 25.15±0.94b | 54.04±5.01b |
LT6 | 44.44±5.09bc | 44.44±5.09bc | 5.37±1.28b | 25.20±1.64b | 46.21±5.05bc |
LT7 | 37.78±6.94cd | 37.78±6.94cd | 5.66±2.12b | 19.22±6.59c | 42.63±3.98c |
Fig. 1
Peanut GA and ABA contents at seed germination stage under COS soakingNote: COS: chitooligosaccharide; CK0, 0 h, 12 h, 24 h, 36 h and 48 h represent dry seed, germinating seed after 0 h (12 h after soaking) , germinating seed after 12 h (24 h after soaking), germinating seed after 24 h (36 h after soaking), germinating seed after 36 h (48 h after soaking) and germinating seed after 48 h (60 h after soaking), respectively. Error bars show the standard deviations of three replicates. Different lowercase letter above the bar means significant difference at the 0.05 probability level
Fig. 2
Effects of COS soaking treatments on the contents of MDA and H2O2 at seed germination stage in peanutNote: COS: chitooligosaccharide; CK0, 0 h, 12 h, 24 h, 36 h and 48 h represent dry seed, germinating seed after 0 h (12 h after soaking) , germinating seed after 12 h (24 h after soaking), germinating seed after 24 h (36 h after soaking), germinating seed after 36 h (48 h after soaking) and germinating seed after 48 h (60 h after soaking), respectively. Error bars show the standard deviations of three replicates. Different lowercase letter above the bar means significant difference at the 0.05 probability level
Fig. 3
Effects of COS soaking treatments on the activities of SOD、POD and CAT at seed germination stage in peanutNote: COS: chitooligosaccharide; CK0, 0 h, 12 h, 24 h, 36 h and 48 h represent dry seed, germinating seed after 0 h (12 h after soaking) , germinating seed after 12 h (24 h after soaking), germinating seed after 24 h (36 h after soaking), germinating seed after 36 h (48 h after soaking) and germinating seed after 48 h (60 h after soaking), respectively. Error bars show the standard deviations of three replicates. Different lowercase letter above the bar means significant difference at the 0.05 probability level
Fig. 4
Effects of COS soaking treatments on the contents of SS, SP and Pro at seed germination stage in peanutNote: SS: soluble sugar; SP: soluble protein; Pro: proline; COS: chitooligosaccharide; CK0, 0 h, 12 h, 24 h, 36 h and 48 h represent dry seed, germinating seed after 0 h (12 h after soaking) , germinating seed after 12 h (24 h after soaking), germinating seed after 24 h (36 h after soaking), germinating seed after 36 h (48 h after soaking) and germinating seed after 48 h (60 h after soaking), respectively. Error bars show the standard deviations of three replicates. Different lowercase letter above the bar means significant difference at the 0.05 probability level
Fig. 5
Effects of COS soaking treatments on the content of ATP and the activity of α-AMS、LIP and PR at seed germination stage in peanutNote: α-AMS: α-amylase; LTP: lipase; PR: protease; ATP: adenosine triphosphate; COS: chitooligosaccharide; CK0, 0 h, 12 h, 24 h, 36 h and 48 h represent dry seed, germinating seed after 0 h (12 h after soaking) , germinating seed after 12 h (24 h after soaking), germinating seed after 24 h (36 h after soaking), germinating seed after 36 h (48 h after soaking) and germinating seed after 48 h (60 h after soaking), respectively. Error bars show the standard deviations of three replicates. Different lowercase letter above the bar means significant difference at the 0.05 probability level
1 |
万书波, 张佳蕾. 中国花生产业降本增效新途径探讨[J]. 中国油料作物学报, 2019, 41(5): 657-662. DOI:10.19802/j.issn.1007-9084.2019130 .
doi: 10.19802/j.issn.1007-9084.2019130 |
2 |
Chen X P, Lu Q, Liu H, et al. Sequencing of cultivated peanut, Arachis hypogaea, yields insights into genome evolution and oil improvement[J]. Mol Plant, 2019, 12(7): 920-934. DOI:10.1016/j.molp.2019.03.005 .
doi: 10.1016/j.molp.2019.03.005 |
3 |
张鹤, 蒋春姬, 殷冬梅, 等. 花生耐冷综合评价体系构建及耐冷种质筛选[J]. 作物学报, 2021, 47(9): 1753-1767. DOI:10.3724/SP.J.1006.2021.04182 .
doi: 10.3724/SP.J.1006.2021.04182 |
4 |
陈小姝, 赵跃, 蒋春姬, 等. 花生品种幼苗耐低温鉴定的生理生化指标筛选[J]. 中国油料作物学报, 2020, 42(4): 649-657. DOI:10.19802/j.issn.1007-9084.2020160 .
doi: 10.19802/j.issn.1007-9084.2020160 |
5 |
He Y Q, Bose S K, Wang M Y, et al. Effects of chitosan oligosaccharides postharvest treatment on the quality and ripening related gene expression of cultivated strawberry fruits[J]. J Berry Res, 2019, 9(1): 11-25. DOI:10.3233/jbr-180307 .
doi: 10.3233/jbr-180307 |
6 |
Li Y Y, Zhang Q Q, Ou L N, et al. Response to the cold stress signaling of the tea plant (Camellia sinensis) elicited by chitosan oligosaccharide[J]. Agronomy, 2020, 10(6): 915. DOI:10.3390/agronomy10060915 .
doi: 10.3390/agronomy10060915 |
7 |
Jia X C, Qin H Q, Bose S K, et al. Proteomics analysis reveals the defense priming effect of chitosan oligosaccharides in Arabidopsis-Pst DC3000 interaction[J]. Plant Physiol Biochem, 2020, 149: 301-312. DOI:10.1016/j.plaphy.2020.01.037 .
doi: 10.1016/j.plaphy.2020.01.037 |
8 |
石欣隆, 杨月琴, 侯小改, 等. 外源壳寡糖对唐古特白刺抗旱性的影响[J]. 江苏农业科学, 2020, 48(13): 172-177. DOI:10.15889/j.issn.1002-1302.2020.13.034 .
doi: 10.15889/j.issn.1002-1302.2020.13.034 |
9 |
赵肖琼, 梁泰帅, 张恒慧. 壳寡糖对PEG胁迫下小麦种子萌发、幼苗生长及渗透调节物质的影响[J]. 种子, 2020, 39(2): 91-95. DOI:10.16590/j.cnki.1001-4705.2020.02.091 .
doi: 10.16590/j.cnki.1001-4705.2020.02.091 |
10 |
刘建新, 欧晓彬, 王金成. 外源H2O2对干旱胁迫下裸燕麦幼苗叶片生理特性的影响[J]. 干旱地区农业研究, 2019, 37(4): 146-153. DOI:10.7606/j.issn.1000-7601.2019.04.20 .
doi: 10.7606/j.issn.1000-7601.2019.04.20 |
11 |
Cheplick S, Sarkar D, Bhowmik P C, et al. Improved resilience and metabolic response of transplanted blackberry plugs using chitosan oligosaccharide elicitor treatment[J]. Can J Plant Sci, 2018, 98(3): 717-731. DOI:10.1139/cjps-2017-0055 .
doi: 10.1139/cjps-2017-0055 |
12 |
顾丽嫱. 壳寡糖对番茄种子萌发的影响[J]. 西南农业学报, 2014, 27(3): 1233-1236. DOI:10.16213/j.cnki.scjas.2014.03.068 .
doi: 10.16213/j.cnki.scjas.2014.03.068 |
13 |
陆建玲, 孙达峰, 张超, 等. 壳寡糖对辣椒种子萌发及幼苗抗氧化酶活性影响研究[J]. 中国野生植物资源, 2012, 31(2): 12-16. DOI:10.3969/j.issn.1006-9690.2012.02.004 .
doi: 10.3969/j.issn.1006-9690.2012.02.004 |
14 |
姜若超, 李莲芳, 李俞鑫, 等. IAA、GA3和壳寡糖浸种对滇油杉种子发芽的影响[J]. 西部林业科学, 2021, 50(6): 110-116, 123. DOI:10.16473/j.cnki.xblykx1972.2021.06.015 .
doi: 10.16473/j.cnki.xblykx1972.2021.06.015 |
15 |
Ali A, Zhang J J, Zhou M M, et al. Chitosan oligosaccharides stimulate the efficacy of somatic embryogenesis in different genotypes of the Liriodendron hybrid[J]. Forests, 2021, 12(5): 557. DOI:10.3390/f12050557 .
doi: 10.3390/f12050557 |
16 |
刘变娥, 遇璐, 丑靖宇. 壳寡糖浸种对玉米戊唑醇种衣剂低温药害的缓解效果[J]. 农药, 2021, 60(1): 23-27. DOI:10.16820/j.cnki.1006-0413.2021.01.006 .
doi: 10.16820/j.cnki.1006-0413.2021.01.006 |
17 |
尹雅洁, 张宗杰, 夏险, 等. 壳寡糖对水稻幼苗生长及抗逆性影响[J]. 生物学杂志, 2021, 38(1): 77-80. DOI:10.3969/j.issn.2095-1736.2021.01.077 .
doi: 10.3969/j.issn.2095-1736.2021.01.077 |
18 |
吴莉, 单守明. 叶面喷施壳寡糖对“赤霞珠”葡萄幼苗抗低温胁迫的影响[J]. 中国南方果树, 2020, 49(4): 107-110. DOI:10.13938/j.issn.1007-1431.20190738 .
doi: 10.13938/j.issn.1007-1431.20190738 |
19 |
Ru L, Jiang L F, Wills R B H, et al. Chitosan oligosaccharides induced chilling resistance in cucumber fruit and associated stimulation of antioxidant and HSP gene expression[J]. Sci Hortic, 2020, 264: 109187. DOI:10.1016/j.scienta.2020.109187 .
doi: 10.1016/j.scienta.2020.109187 |
20 | 匡银近, 彭惠娥, 叶桂萍, 等. 壳寡糖提高茄子幼苗抗冷性的效应研究[J]. 北方园艺, 2009(9): 14-17. |
21 |
Liu X, Hu P W, Huang M K, et al. The NF-YC–RGL2 module integrates GA and ABA signalling to regulate seed germination in Arabidopsis [J]. Nat Commun, 2016, 7: 12768. DOI:10.1038/ncomms12768 .
doi: 10.1038/ncomms12768 |
22 |
孟静静, 张佳蕾, 刘应炜, 等. 壳寡糖对高产花生叶片衰老及产量和品质的影响[J]. 中国油料作物学报, 2017, 39(4): 483-487. DOI:10.7505/j.issn.1007-9084.2017.04.008 .
doi: 10.7505/j.issn.1007-9084.2017.04.008 |
23 |
余燕, 张雅婷, 赵雪, 等. H2O2浸种对低温胁迫下花生种子萌发的调控作用[J]. 中国油料作物学报, 2020, 42(5): 860-868. DOI:10.19802/j.issn.1007-9084.2019269 .
doi: 10.19802/j.issn.1007-9084.2019269 |
24 | 郝西, 崔亚男, 张俊, 等. 过氧化氢浸种对花生种子发芽及生理代谢的影响[J]. 作物学报, 2021, 47(9): 1834-1840. |
25 |
石欣隆, 杨月琴, 薛娴, 等. 壳寡糖对干旱胁迫下'凤丹'幼苗生长及生理特性的影响[J]. 南京林业大学学报(自然科学版), 2021, 45(2): 120-126. DOI:10.12302/j.issn.1000-2006.202003012 .
doi: 10.12302/j.issn.1000-2006.202003012 |
26 |
于明艳. 影响花生种子萌发的因素分析[J]. 农业科技与装备, 2021(4): 3-4. DOI:10.16313/j.cnki.nykjyzb.2021.04.001 .
doi: 10.16313/j.cnki.nykjyzb.2021.04.001 |
27 |
薛晓梦, 吴洁, 王欣, 等. 低温胁迫对普通和高油酸花生种子萌发的影响[J]. 作物学报, 2021, 47(9): 1768-1778. DOI:10.3724/SP.J.1006.2021.04170 .
doi: 10.3724/SP.J.1006.2021.04170 |
28 |
Mukhtar Ahmed K B, Khan M M A, Siddiqui H, et al. Chitosan and its oligosaccharides, a promising option for sustainable crop production- a review[J]. Carbohydr Polym, 2020, 227: 115331. DOI:10.1016/j.carbpol.2019.115331 .
doi: 10.1016/j.carbpol.2019.115331 |
29 |
Yuan X B, Zheng J P, Jiao S M, et al. A review on the preparation of chitosan oligosaccharides and application to human health, animal husbandry and agricultural production[J]. Carbohydr Polym, 2019, 220: 60-70. DOI:10.1016/j.carbpol.2019.05.050 .
doi: 10.1016/j.carbpol.2019.05.050 |
30 |
Yu F, Li M, He D L, et al. Advances on post-translational modifications involved in seed germination[J]. Front Plant Sci, 2021, 12: 642979. DOI:10.3389/fpls.2021.642979 .
doi: 10.3389/fpls.2021.642979 |
31 |
Huang Y T, Zhang Y C, Gao C H, et al. The interactions of plant growth regulators and H2O2 during germination improvement of sweet corn seed through spermidine application[J]. Plant Growth Regul, 2018, 85(1): 15-26. DOI:10.1007/s10725-018-0370-z .
doi: 10.1007/s10725-018-0370-z |
32 |
张珂, 厉萌萌, 刘德权, 等. 镉胁迫对小麦、玉米种子萌发及幼苗生长的影响[J]. 种子, 2019, 38(5): 90-94. DOI:10.16590/j.cnki.1001-4705.2019.05.090 .
doi: 10.16590/j.cnki.1001-4705.2019.05.090 |
33 |
扈学文, 许秋瑾, 金相灿, 等. 不同分子量壳寡糖对黑麦草种子萌发和幼苗抗病酶活性影响的研究[J]. 中国农学通报, 2007, 23(2): 221-225. DOI:10.3969/j.issn.1000-6850.2007.02.053 .
doi: 10.3969/j.issn.1000-6850.2007.02.053 |
34 |
Zhou W G, Chen F, Luo X F, et al. A matter of life and death: molecular, physiological, and environmental regulation of seed longevity[J]. Plant Cell Environ, 2020, 43(2): 293-302. DOI:10.1111/pce.13666 .
doi: 10.1111/pce.13666 |
35 |
Shu K, Liu X D, Xie Q, et al. Two faces of one seed: hormonal regulation of dormancy and germination[J]. Mol Plant, 2016, 9(1): 34-45. DOI:10.1016/j.molp.2015.08.010 .
doi: 10.1016/j.molp.2015.08.010 |
36 |
马正才, 马月芳. 不同浓度植物激素对青稞种子萌发及育苗的影响[J]. 甘肃高师学报, 2021, 26(5): 14-19. DOI:10.3969/j.issn.1008-9020.2021.05.005 .
doi: 10.3969/j.issn.1008-9020.2021.05.005 |
37 |
李颖, 鱼小军, 赵一珊, 等. 水杨酸和脱落酸浸种对低温下扁蓿豆种子萌发和幼苗生长的影响[J]. 草地学报, 2021, 29(1): 174-181. DOI:10.11733/j.issn.1007-0435.2021.01.021 .
doi: 10.11733/j.issn.1007-0435.2021.01.021 |
38 |
马学才, 杨贺红, 王志敏, 等. 脱落酸对低温胁迫下白菜型冬油菜种子萌发特性的影响[J]. 甘肃农业科技, 2019(9): 27-32. DOI:10.3969/j.issn.1001-1463.2019.09.008 .
doi: 10.3969/j.issn.1001-1463.2019.09.008 |
39 |
Liu Y, Xu H, Wen X X, et al. Effect of polyamine on seed germination of wheat under drought stress is related to changes in hormones and carbohydrates[J]. J Integr Agric, 2016, 15(12): 2759-2774. DOI:10.1016/S2095-3119(16)61366-7 .
doi: 10.1016/S2095-3119(16)61366-7 |
40 |
Kucera B, Cohn M A, Leubner-Metzger G. Plant hormone interactions during seed dormancy release and germination[J]. Seed Sci Res, 2005, 15(4): 281-307. DOI:10.1079/ssr2005218 .
doi: 10.1079/ssr2005218 |
41 |
刘零怡, 赵丹莹, 郑杨, 等. 植物在低温胁迫下的过氧化氢代谢及信号转导[J]. 园艺学报, 2009, 36(11): 1701-1708. DOI:10.16420/j.issn.0513-353x.2009.11.001 .
doi: 10.16420/j.issn.0513-353x.2009.11.001 |
42 |
Inupakutika M A, Sengupta S, Devireddy A R, et al. The evolution of reactive oxygen species metabolism[J]. J Exp Bot, 2016, 67(21): 5933-5943. DOI:10.1093/jxb/erw382 .
doi: 10.1093/jxb/erw382 |
43 |
向前胜, 张政, 张登山, 等. 青海高原不同种源西北小檗幼苗对低温胁迫的生理响应[J]. 青海大学学报, 2021, 39(5): 14-22. DOI:10.13901/j.cnki.qhwxxbzk.2021.05.003 .
doi: 10.13901/j.cnki.qhwxxbzk.2021.05.003 |
44 |
宋仕勤, 杨清龙, 王丹, 等. 东北主推玉米品种种子形态及贮藏物质与萌发期耐冷性的关系[J]. 作物学报, 2022, 48(3): 726-738. DOI:10.3724/SP.J.1006.2022.13016 .
doi: 10.3724/SP.J.1006.2022.13016 |
45 |
丁燕, 呼凤兰, 畅博奇. NaCl胁迫对玉米种子萌发特性及α-淀粉酶活性的影响[J]. 黑龙江农业科学, 2019(4): 11-14. DOI:10.11942/j.issn1002-2767.2019.04.0011 .
doi: 10.11942/j.issn1002-2767.2019.04.0011 |
46 |
牛晓雪, 牟萌, 李保华, 等. FeSO4引发提高秦艽种子萌发的生理机制[J]. 中国生态农业学报, 2018, 26(12): 1828-1835. DOI:10.13930/j.cnki.cjea.180257 .
doi: 10.13930/j.cnki.cjea.180257 |
47 | 黄伟超, 范宇博, 王泳超. 低温胁迫对玉米幼苗抗氧化系统及渗透调节物质的影响[J]. 中国农学通报, 2018, 34(24): 6-12. |
48 |
Aghdam M S, Luo Z S, Jannatizadeh A, et al. Employing exogenous melatonin applying confers chilling tolerance in tomato fruits by upregulating ZAT2/6/12 giving rise to promoting endogenous polyamines, proline, and nitric oxide accumulation by triggering arginine pathway activity[J]. Food Chem, 2019, 275: 549-556. DOI:10.1016/j.foodchem.2018.09.157 .
doi: 10.1016/j.foodchem.2018.09.157 |
[1] | Li-yun WAN, Wei-fang REN, Si-jian WANG, Peng HUANG, Peng XU, Jia-hai FANG. Identification and expression analysis of STS/CHS genes in peanut [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2023, 45(1): 102-110. |
[2] | Yan-yan SUO, Xiang ZHANG, Xian-zong SI, Liang LI, Pei-jun CHENG, Hui YU, Juan LIU. Effects of lime and biochar applicationon nitrogen uptake and yield of peanut in acid soil [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2023, 45(1): 148-154. |
[3] | Hai-ning WU, Zhi-peng HUANG, Xiu-mei TANG, Fa-qian XIONG, Jing JIANG, Rui-chun ZHONG, Zhu-qiang HAN, Jing LIU, Liang-qiong HE, Rong-hua TANG. Effects of N, P and K ratio on nutrient absorption, yield and economic benefit of peanut under sugarcane / peanut intercropping [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2023, 45(1): 155-163. |
[4] | Peng-xia GUO, Yu YOU, Bo-lun YU, Jian-bin GUO, Huai-yong LUO, Li HUANG, Nian LIU, Wei-gang CHEN, Yong LEI, Bo-shou LIAO, Li-ying YAN, Hui-fang JIANG, Xiao-jing ZHOU. Development of novel peanut germplasm with resistance to late leaf spot and elite yield and plant-type characteristics [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2023, 45(1): 95-101. |
[5] | Jia-li GONG, Dong-lei SUN, Neng-fei BIAN, Xing WANG, Xiao-jun WANG. Research progress of peanut bacterial wilt in China [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1159-1165. |
[6] | Min-jie GUO, Li DENG, Yu-rong Li, Jin WANG, Li REN. Comprehensive evaluation of Jihua peanut varieties with high oleic acid based on principal component and cluster analysis [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1210-1217. |
[7] | Zi-xiang ZOU, Ying LIU, Ding-gang ZHOU, Li-li LIU, Da-wei ZHANG, Jin-feng WU, Mei LI, Ming-li YAN. Allelopathy of Brassica napus straw aqueous extract on germination and growth of rice [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1286-1295. |
[8] | Qi-qi DONG, Yang YUAN, Qi DU, Zhen-hua LIU, Xiao-long SHI, Ke-zhao ZHANG, Dong-ying ZHOU, Xu YANG, Xiao-guang WANG, Chun-ji JIANG, Xi-bo LIU, Feng GUO, Xin-hua ZHAO, Hai-qiu YU. Effects of strip intercropping of maize and peanut on nitrogen uptake and soil microbial community diversity [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1296-1306. |
[9] | Zhong-sheng CAO, Yan-da LI, Jun-bao HUANG, Bin-feng SUN, Chun YE, Shi-fu SHU, Luo-fa WU, Yong-chao TIAN. Sensitive vegetation indices and optimal bandwidths for monitoring peanut LAI and AGB [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1320-1328. |
[10] | SACHURULA, BADUMUCAICIKE, Rui-lin TIAN, Zhan-ming HOU, Zhen-xing WANG. Effects of peanut, soybean and carrot as feed on development and adult survival of Dolycoris baccarum [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1337-1340. |
[11] | Shao-jian LI, Meng GAO, Na WANG, Wan-wan FAN, Su-ling SANG, Guang YANG, Hang-yu LI, Xiao-wei CUI, Zhen-yu WANG. Differences in conidia of peanut web blotch pathogen and its pathogenicity analysis [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1341-1348. |
[12] | Jia-ning LIANG, Jun ZHANG, Le-zeng TAN, Song-nan YANG, Xue-ying LI, Dan YAO, Liang-yu CHEN, Qiu-lin WU, Yong-yi XING, Xiao HAN. Transcriptome analysis of peanut protein mutants at different seed development stages [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 1018-1029. |
[13] | Ting XU, Yan-tao LIU, Hai-jiang WANG, Qiang LI, Peng WANG, Hong-ye DONG. Effects of saline-alkali stress on germination characteristics of peanut seeds and comprehensive identification and evaluation of salt damage [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 1037-1047. |
[14] | Liang-qiang CHENG, Jian-bin GUO, Wei-tao LI, Li HUANG, Huai-yong LUO, Nian LIU, Xiao-jing ZHOU, Wei-gang CHEN, Jun WANG, Jian-wei LYU, Ting-hui HU, Qing-lin RAO, Yong LEI, Bo-shou LIAO, Hui-fang JIANG. Novel genotypes and quantitative trait locus for rust resistance in peanut [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 1074-1080. |
[15] | Hong-chang JI, Xiao-chen QIU, Wen-hao LIU, Chang-li HU, Ming KONG, Xiao-hui HU, Jian-bin HUANG, Xue YANG, Yan-yan TANG, Xiao-jun ZHANG, Jing-shan WANG, Li-xian QIAO. Construction and application of near infrared ray model for oil content prediction in peanut kernel [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 1089-1097. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||