CHINESE JOURNAL OF OIL CROP SCIENCES ›› 2023, Vol. 45 ›› Issue (1): 38-45.doi: 10.19802/j.issn.1007-9084.2021327
Previous Articles Next Articles
Shuang LI(), Ke XU, Hai-yuan LI, Zhao-xin WANG, Chen-guang WANG, Ping XU, Xiao-hua WANG(
)
Received:
2021-12-30
Online:
2023-02-25
Published:
2023-03-03
Contact:
Xiao-hua WANG
E-mail:2696452936@qq.com;wangxiaohuasci@126.com
CLC Number:
Shuang LI, Ke XU, Hai-yuan LI, Zhao-xin WANG, Chen-guang WANG, Ping XU, Xiao-hua WANG. Preliminary study of BnGRP1 gene editing by CRISPR/Cas9 in Brassica napus L.[J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2023, 45(1): 38-45.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jouroilcrops.cn/EN/10.19802/j.issn.1007-9084.2021327
Fig. 1
Construction of genome editing vectorNote: Design four primers containing TD1 and TD2 fragments, use pCBC-TD1TD2 vector as a template to synthesize sgRNA fragments, and clone into pSKE401 vector through the Bsa Ιrestriction sites on TD1 and TD2 to obtain a dual-target genome editing vector G2-TD1TD2. LB and RB are the left and right borders of Agrobacterium T-DNA, respectively; U6-26p, U6-29p are the promoters of Arabidopsis U6 gene, U6-26t is the transcription terminator; 35Sp-Cas9-NosT and 35Sp -Kana-PolyA are Cas9 and Kana gene expression boxes, respectively
Fig. 3
Agrobacterium mediated genetic transformation of G2-TD1TD2 in Brassica napus Westar and PCR identification of regenerated seedlings of genetic transformationNote: A: The callus formed by dedifferentiation of explants; B: The adventitious buds formed by callus redifferentiation; C: Regenerated seedlings in rooting medium; D: Regenerated rape seedlings transplanted into nutrient soil; E: PCR identification of regenerated seedlings of genetic transformation
1 |
胡庆一, 王晓丹, 张振乾, 等. 油菜含油量相关基因Gpat、Lpat在不同肥密条件下表达规律研究[J]. 基因组学与应用生物学, 2019, 38(2): 714-720. DOI:10.13417/j.gab.038.000714 .
doi: 10.13417/j.gab.038.000714 |
2 | 刘学军. 大力发展以油菜为主的油料作物[J]. 农牧产品开发, 1999(2): 21. |
3 | 黄智刚 .不同施磷量对油菜根系形态和磷吸收的影响[J]. 广西农学报, 2000(3): 27-29. |
4 | 施法军. 油菜缺素诊断与分析[J]. 农技服务, 2013, 30(11): 1178, 1180. |
5 |
闫金垚, 郭丽璇, 王昆昆, 等. 长江流域稻-油轮作区土壤磷库现状及环境风险分析[J]. 土壤学报, 2021. DOI: 10.11766/trxb202108050327 .
doi: 10.11766/trxb202108050327 |
6 | 沈宏, 施卫明, 王校常, 等. 不同作物对低磷胁迫的适应机理研究[J]. 植物营养与肥料学报, 2001, 7(2): 172-177, 210. |
7 | 郭再华, 贺立源, 徐才国. 不同耐低磷水稻基因型秧苗对难溶性磷的吸收利用[J]. 作物学报, 2005, 31(10): 1322-1327. |
8 |
Ae N, Arihara J, Okada K, et al. Phosphorus uptake by pigeon pea and its role in cropping systems of the Indian subcontinent [J]. Science, 1990, 248(4954): 477-480. DOI:10.1126/science.248.4954.477 .
doi: 10.1126/science.248.4954.477 |
9 |
李海波, 夏铭, 吴平. 低磷胁迫对水稻苗期侧根生长及养分吸收的影响[J]. 植物学报, 2001, 43(11): 1154-1160. DOI:10.3321/j.issn: 1672-9072.2001.11.010 .
doi: 10.3321/j.issn: 1672-9072.2001.11.010 |
10 |
Kim J S, Park S J, Kwak K J, et al. Cold shock domain proteins and Glycine-rich RNA-binding proteins from Arabidopsis thaliana can promote the cold adaptation process in Escherichia coli [J]. Nucleic Acids Res, 2007, 35(2): 506-516. DOI:10.1093/nar/gkl1076 .
doi: 10.1093/nar/gkl1076 |
11 | 徐瑞. 中国樱桃富含甘氨酸RNA结合蛋白基因克隆与功能初鉴[D]. 金华: 浙江师范大学, 2018. |
12 |
栗晓飞, 曹英秀, 宋浩. CRISPR/Cas9系统研究进展[J]. 中国生物工程杂志, 2017, 37(10): 86-92. DOI:10.13523/j.cb.20171012 .
doi: 10.13523/j.cb.20171012 |
13 |
李文, 曹俊国, 曹满园, 等. 基因编辑技术的发展及其应用[J]. 特产研究, 2019, 41(1): 124-128. DOI:10.16720/j.cnki.tcyj.2019.01.027 .
doi: 10.16720/j.cnki.tcyj.2019.01.027 |
14 |
Čermák T, Baltes N J, Čegan R, et al. High-frequency, precise modification of the tomato genome [J]. Genome Biol, 2015, 16(11): 232. DOI:10.1186/s13059-015-0796-9 .
doi: 10.1186/s13059-015-0796-9 |
15 |
Cai Y P, Chen L, Liu X J, et al. CRISPR/Cas9-mediated genome editing in soybean hairy roots [J]. PLoS One, 2015, 10(8): e0136064. DOI:10.1371/journal.pone.0136064 .
doi: 10.1371/journal.pone.0136064 |
16 |
刘维, 刘浩, 董双玉, 等. 利用CRISPR/Cas9 技术创建OsCOL9水稻突变体[J]. 华北农学报, 2017, 32(4): 42-48. DOI:10.7668/hbnxb.2017.04.007 .
doi: 10.7668/hbnxb.2017.04.007 |
17 |
Li J, Meng X B, Zong Y, et al. Gene replacements and insertions in rice by intron targeting using CRISPR-Cas9 [J]. Nat Plants, 2016, 2(10): 16139. DOI:10.1038/nplants.2016.139 .
doi: 10.1038/nplants.2016.139 |
18 | 杨宗辉. 甘蓝型油菜波里马细胞质雄性不育恢复基因的图位克隆和功能研究[D]. 武汉: 华中农业大学, 2016. |
19 |
Zheng Z, Wang Z, Wang X Y, et al. Blue light-triggered chemical reactions underlie phosphate deficiency-induced inhibition of root elongation of Arabidopsis seedlings grown in petri dishes [J]. Mol Plant, 2019, 12(11): 1515-1523. DOI:10.1016/j.molp.2019.08.001 .
doi: 10.1016/j.molp.2019.08.001 |
20 | Liu D. Root developmental responses to phosphorus nutrition [J]. J Integr Plant Biol, 2021, 63(6): 1065-1090. |
21 |
Gojon A, Nacry P, Davidian J C. Root uptake regulation: a central process for NPS homeostasis in plants [J]. Curr Opin Plant Biol, 2009, 12(3): 328-338. DOI:10.1016/j.pbi.2009.04.015 .
doi: 10.1016/j.pbi.2009.04.015 |
22 | Theodorou M E, Cornel F A, Duff S M, et al. Phosphate starvation-inducible synthesis of the alpha-subunit of the pyrophosphate-dependent phosphofructokinase in black mustard suspension cells [J]. J Biol Chem, 1992, 267(30): 21901-21905. |
23 |
汪威. 甘蓝型油菜磷高效QTL qPRL-C06的定位及离子组对低磷胁迫的响应[D]. 武汉:华中农业大学, 2021. DOI:10.27158/d.cnki.ghznu.2021.000018 .
doi: 10.27158/d.cnki.ghznu.2021.000018 |
24 |
Yang M, Ding G D, Shi L, et al. Quantitative trait loci for root morphology in response to low phosphorus stress in Brassica napus [J]. Theor Appl Genet, 2010, 121(1): 181-193. DOI:10.1007/s00122-010-1301-1 .
doi: 10.1007/s00122-010-1301-1 |
25 |
Zhang Y, Thomas C L, Xiang J X, et al. QTL meta-analysis of root traits in Brassica napus under contrasting phosphorus supply in two growth systems[J]. Sci Rep, 2016, 6(1): 33113. DOI:10.1038/srep33113 .
doi: 10.1038/srep33113 |
26 |
Wang X H, Chen Y L, Thomas C L, et al. Genetic variants associated with the root system architecture of oilseed rape (Brassica napus L.) under contrasting phosphate supply [J]. DNA Res, 2017, 24(4): 407-417. DOI:10.1093/dnares/dsx013 .
doi: 10.1093/dnares/dsx013 |
[1] | Ya-ping CHEN, Xiao-tian ZHU, Yue HONG, Mao-run ZHOU, Chao ZHENG, Cui-ying WEI, Mei-song ZHOU, Yan YU, Fu-gui ZHANG, Yan-hua KAN, Ke-jin ZHOU. Effects of foliar spraying potassium-containing organic water-soluble fertilizer on rapeseed growth and yield [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2023, 45(1): 131-137. |
[2] | Kai-xiang LI, De-zhi DU. Breeding of determinate inflorescence new varieties of Brassica napus by molecular marker-assisted selection (MAS) [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2023, 45(1): 30-37. |
[3] | Bi-yun CHEN, Pei-jun LYU, Kun XU, Xiao-ming WU. Chloroplast DNA polymorphism of Brassica napus using SSR markers [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2023, 45(1): 46-55. |
[4] | Yan-ling CHEN, Ning WANG, Lei SHI. Analysis of phosphorus efficiency and screening of P-efficient germplasm on natural population of oilseed rape (Brassica napus) at seedling stage [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2023, 45(1): 56-62. |
[5] | Zu-qing MENG, Feng-ping SONG, Jia-hui HUO, Mo-feng ZHANG, Fu-chao YANG, Wei-lie ZHENG, Cui-hua LIU. Comparative analysis on light-temperature resource use efficiency of spring rapeseed(Brassica napus) differing in maturity in China Tibet under plateau climate [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2023, 45(1): 63-71. |
[6] | Ming-chuan ZHU, Jun-yan WU, Li MA, Shi-qian GUO, Xiao-ru CUI, Xiu-cun ZENG, Li-jun LIU, Yuan-yuan PU, Xue-cai LI, Wan-cang SUN. Grey correlation analysis of nutrient accumulation characteristics and yield traits of winter rapeseed in North China [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2023, 45(1): 72-82. |
[7] | Jing-xiu YE, Hai-dong LIU, Xiao-rong XING, Jun LI, De-zhi DU. Relationship between chlorophyll content and yield and development of chlorophyll major QTL cqSPDA2 linkage marker in Brassica napus [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1173-1181. |
[8] | Mei XIONG, Guang-sheng YANG, Deng-feng HONG, Zhao-yang WANG. Genetic improvement and application of resistance to clubroot in male parent of Brassica napus hybrid Shengguang 168 [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1182-1189. |
[9] | Yan-cheng WEN, Jun-ping HE, Dong-fang CAI, Shu-fen ZHANG, Jia-cheng ZHU, Jian-ping WANG, Jin-hua CAO, Kun HU, Lei ZHAO, Dong-guo WANG, Yi-zi LIU. Genetic rule of cuticular wax in Brassica napus L. and their roles in stress resistance [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1190-1198. |
[10] | Shuai DU, Li-li WAN, Zhuan-rong WANG, Yi XU, Deng-feng HONG, Guang-sheng YANG. Genetic transformation and resistance evaluation of glyphosate resistance gene in Brassica napus [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1199-1209. |
[11] | Zi-xiang ZOU, Ying LIU, Ding-gang ZHOU, Li-li LIU, Da-wei ZHANG, Jin-feng WU, Mei LI, Ming-li YAN. Allelopathy of Brassica napus straw aqueous extract on germination and growth of rice [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(6): 1286-1295. |
[12] | Sheng-bo WANG, Yi-ming HUANG, Cong-yuan LIANG, Jing WANG, Qing-yong YANG. Construction of fingerprint for Brassica napus germplasm by genome-wide SNPs [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 966-972. |
[13] | Cheng CUI, Hao-jie LI, Jin-fang ZHANG, Ben-chuan ZHENG, Liang CHAI, Jun JIANG, Ka ZHANG, Hai-yan QIN, Zai-yun LI, Liang-cai JIANG. Preliminary study on Songyou 2 for oilseeds and cruciferous vegetable [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 973-980. |
[14] | Xue-cai LI, Jiao-jiao JIN, Li MA, Jun-yan WU, Qi-xian CHEN, Rui ZENG, Xiu-cun ZENG, Xiao-ru CUI, Wan-cang SUN. Relationship between height of growth point and cold resistance in strong winter rape (Brassica napus L.) in Northern China [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 739-750. |
[15] | Xiao-qin WU, You-yi WANG, Yi-kai TONG, Jian-feng ZHANG, Bin-jie GU, Fan XU, Feng REN. Resistance to low temperature stresses of BnPHR1 overexpressing transgenic Brassica napus [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 751-761. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||