Excavation and expression analysis of miRNA related to oil synthesis during seed development in sunflower

Fei ZHOU, Wen-jun WANG, Xu-tang HUANG, Jun MA, Li-ren WU, Jing WANG, Peng-yuan XIE, Yan LIU

CHINESE JOURNAL OF OIL CROP SCIENCES ›› 2023, Vol. 45 ›› Issue (5) : 965-971.

PDF(1102 KB)
Welcome to CHINESE JOURNAL OF OIL CROP SCIENCES, May. 14, 2025
PDF(1102 KB)
CHINESE JOURNAL OF OIL CROP SCIENCES ›› 2023, Vol. 45 ›› Issue (5) : 965-971. DOI: 10.19802/j.issn.1007-9084.2022198

Excavation and expression analysis of miRNA related to oil synthesis during seed development in sunflower

Author information +
History +

Abstract

In order to explore the role of miRNA (microRNA) in seed oil synthesis of sunflower, miRNA sequencing in 3 development stages (7 d, 22 d, 37 d after flowering) of high oleic acid sunflower seeds were mined. Results showed that 22 differentially expressed miRNAs were involved in oil metabolism pathway based on comparisons of L7d vs L22d, L7d vs L37d and L22d vs L37d. Clustering heat map showed that most miRNAs in the 22d vs 37d comparison group were down-regulated, indicating that the expression of most miRNAs related to oil metabolism decreased at 37 d after flowering compared with 22 d after flowering. The 22 differentially expressed miRNAs annotated with target gene into fatty acid and triacylglycerol synthesis pathway were analyzed for the correlation between expression level and fatty acid components at different stages of seed development. Results also showed that caproic acid and miR172a3, tridecylic acid and miR171b2 were both extremely significantly negatively correlated, and oil content was significantly positively correlated with miR167d5p, indicating that these miRNAs might be involved in oil synthesis. Through co-expression analysis, it was found that 6 miRNAs related to oil metabolism (miR166u, miR171b_2, miR397a_3, miR157d, miR167a-5p, miR169v_1) were negatively correlated with their target genes, indicating that the differential expression of these genes might be the result of miRNA regulation.

Key words

sunflower / high oleic acid / seed development / fatty acid / microRNA sequencing

Cite this article

Download Citations
Fei ZHOU , Wen-jun WANG , Xu-tang HUANG , Jun MA , Li-ren WU , Jing WANG , Peng-yuan XIE , Yan LIU. Excavation and expression analysis of miRNA related to oil synthesis during seed development in sunflower[J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2023, 45(5): 965-971 https://doi.org/10.19802/j.issn.1007-9084.2022198
向日葵(Helianthus annuus L.)是世界上四大油料作物之一。向日葵油中富含不饱和脂肪酸,是一种营养价值很高的食用油,其不饱和脂肪酸主要为亚油酸和油酸,尤其是亚油酸含量可高达70%左右,为胡麻油的4倍、油菜籽油的3倍、花生油的2倍以及大豆油的1.8倍[1]。在人类饮食中,高比例的不饱和脂肪酸有利于心血管健康[2]。然而,多不饱和脂肪酸(亚油酸、亚麻酸等)使食品油更容易氧化,而影响油的味道,缩短油的保质期[3]。而单不饱和脂肪酸(油酸等)具有降低血液黏稠度,改善血液环境,减少氧化和酸败从而延长油的货架期等作用[4]。说明脂肪酸组成直接决定植物油的品质,了解植物油脂合成调控机理对于改良油品质的分子育种具有重要意义。
植物miRNA(microRNA)的研究最初从模式植物拟南芥中开始,之后人们又从水稻等主要粮食作物中克隆了很多miRNA。目前已知植物诸多生物学过程都受到miRNA的调控,包括细胞维持和分化、生长发育、信号转导及对环境因素胁迫的响应[5]。通过在植物种子和叶片中鉴定差异表达miRNA,发现miRNA在种子的发育和脂肪酸代谢过程中有重要功能[6]。油菜(Brassica napus L.)里发现了很多影响种子油分含量的miRNA,如miR156、miR157、miR2203等[7~9]。Wang等[8]鉴定了5个已知的及19个新发现的miRNA,可能影响油菜脂肪酸合成。大豆里同样鉴定到miR156、miR159、miR166和miR167等影响种子油分含量的miRNA[10]。miR1432-OsACOT途径在水稻调控脂肪酸合成和代谢中起到重要作用[11]。尽管在很多植物中鉴定到种子油脂合成相关的miRNA,但向日葵中miRNA大多数是关于胁迫方面的研究[12],而种子发育和油脂代谢方面的研究未见报道。
本研究以高油酸向日葵L-1-OL-1为材料,对开花后7、22和37 d的种子进行miRNA测序,对三个发育时期差异表达的miRNA进行鉴定和功能分析,并利用前期转录组测序结果,将差异表达mRNA与miRNA进行共表达分析,挖掘参与向日葵油脂合成的miRNA,为miRNA在植物油脂合成过程中的作用提供有价值的信息,并为解析植物油脂合成分子调控机制奠定基础。

1 材料与方法

1.1 材料

美国育种家最先提出中、高油酸含量油葵杂交种概念:中油酸含量稳定在60%~75%,高油酸向日葵油酸含量在90%左右[13]。本研究以塞尔维亚引进的高油酸向日葵保持系L-1-OL-1(油酸含量为87.6%)为材料,种植于黑龙江农业科学院经济作物研究所试验基地,每天同一时间段对当天开花的植株做标记,取开花后7 d(7 DAF)、22 d(22 DAF)和37 d(37 DAF)3个发育时期的种子,每次取相同3个植株的种子作为3次生物学重复,取花盘最外3圈的种子。取样并液氮速冻后冻存于-80℃冰箱,用于小RNA测序。油脂含量测定同样取以上3个发育时期的种子为材料,3次生物学重复,取完样在60℃烘干后进行测定。

1.2 方法

1.2.1 表达量聚类热图分析

miRNA测序及数据的处理和分析方法见文献[14]。基于miRNA表达量的平均FPKM,利用BMK-Cloud平台上的聚类热图绘制工具对表达量结果进行热图分析(www.biocloud.net)。

1.2.2 miRNA表达量与油脂含量的相关性分析

种子含油量委托农业农村部谷物及制品质量监督检验测试中心(哈尔滨)进行测定,采用索氏抽提法,检测依据为NY/T 4-1982。脂肪酸含量委托武汉迈特维尔公司进行测定,采用气相色谱分析法,检测依据为GB/T 17377-2008。利用SPSS statistics 17.0软件对种子发育不同时期miRNA表达量与五种基本脂肪酸含量、含油量进行pearson相关系数分析。

1.2.3 差异mRNA与miRNA共表达分析

基于mRNA和miRNA的表达量,进一步分析miRNA及其靶基因的关联关系。基于每组靶关系在相同样品的不同组学的表达量,我们使用R包计算它们的pearson相关系数,一般认为相关系数绝对值在0.6以上才具有相关性[15]。基于相关系数和靶向关系,对每组差异的结果进行分类(正相关和负相关)并进行KEGG注释和分析。

2 结果与分析

2.1 油脂代谢相关差异表达miRNA分析

根据前期研究KEGG对靶基因功能注释的结果,发现油脂代谢相关通路中的差异表达(differentially expressed,DE)miRNA有22个(表1),包括调控乙酰辅酶A氧化酶的miR157a-5p、miR157d、miR6300,调控Δ12脂肪酸脱氢酶FAD2的miR171a_3、miR171b_2,调控3氧酰基ACP合酶II的5个miRNA:miR167a、miR167a-5p、miR167a_2、miR167d-5p、miR167d_1,调控烯醇-CoA异构酶和磷脂酶D1/2的miR6111-5p,调控3酮酯酰CoA合酶的miR166u,调控3羟脂酰ACP脱水酶的miR164c_1,调控长链脂酰辅酶A合成酶的miR169v_1,调控二酰甘油二磷酸盐磷酸酶的miR397a_3,调控甘磷酰二酯磷酸二酯酶的miR172a_2、miR172a_3、miR172c_2,调控1,2-二酰甘油3-β-半乳糖基转移酶的miR396b、miR396b-5p、miR396e-5p,调控磷脂酶A1的miR171i_1。将这些miRNA做表达量热图的分析(图1),可以看出,22d vs 37d比较组中有15个miRNA下调表达,这表明油脂代谢相关的大部分miRNA在37 d相比于22 d表达量降低。其它两个比较组7d vs 22d和7d vs 37d中下调表达的miRNA稍多于上调表达的miRNA。
Table 1 Differentially expressed miRNA and their target genes in lipid metabolism pathways

表1 油脂代谢通路中差异表达miRNA及其靶基因

miRNA ID

靶基因ID

Target gene ID

基因名

Gene name

KEGG注释

KEGG annotation

miR157a-5p(22d vs 37d)

miR157d(7d vs 22d,7d vs 37d)

XM_022145135.1

XM_022145134.1

XM_022145138.1

XM_022145137.1

ACOX1, ACOX3 K00232 acyl-CoA oxidase
miR6300(7d vs 22d) XM_022144203.1 ACOX1, ACOX3 K00232 acyl-CoA oxidase

miR171a_3(7d vs 37d)

miR171b_2(7d vs 22d,7d vs 37d)

XM_022180675.1 FAD2 K10256 Delta-12 fatty acid desaturase

miR167a(7d vs 22d,7d vs 37d,22d vs 37d)

miR167a-5p(7d vs 37d,22d vs 37d)

miR167a_2(7d vs 22d,7d vs 37d)

miR167d-5p(7d vs 22d,7d vs 37d,22d vs 37d)

miR167d_1(7d vs 22d,7d vs 37d)

XM_022138859.1

XM_022138860.1

XM_022138861.1

XM_022138855.1

XM_022138863.1

KAS-II K09458 3-oxoacyl-[acyl-carrier-protein] synthase II
miR6111-5p(7d vs 22d)

XM_022173634.1

XM_022173633.1

ECI1_2 K07517 Delta3-Delta2-enoyl-CoA isomerase
miR6111-5p(7d vs 22d)

XM_022170833.1

XM_022147236.1

PLD1_2 K01115 phospholipase D1/2
miR166u(7d vs 22d,7d vs 37d) XM_022179947.1 KCS K15397 3-ketoacyl-CoA synthase
miR164c_1(7d vs 37d,22d vs 37d) XM_022172057.1 HAD K02372 3-hydroxyacyl-[acyl-carrier-protein] dehydratase
miR169v_1(7d vs 37d,22d vs 37d)

XM_022154766.1

XM_022154765.1

LACS K01897 long-chain acyl-CoA synthetase
miR397a_3(7d vs 22d,7d vs 37d) XM_022173175.1 DPP1, DPPL, PLPP4_5 K18693 diacylglycerol diphosphate phosphatase

miR172a_2(7d vs 22d,7d vs 37d,22d vs 37d)

miR172a_3(7d vs 37d,22d vs 37d)

miR172c_2(7d vs 22d,7d vs 37d)

XM_022122517.1 glpQ, ugpQ K01126 glycerophosphoryl diester phosphodiesterase

miR396b(7d vs 22d,7d vs 37d,22d vs 37d)

miR396b-5p(7d vs 22d,7d vs 37d,22d vs 37d)

miR396e-5p(7d vs 22d,7d vs 37d,22d vs 37d)

XM_022153737.1

XM_022153734.1

XM_022153735.1

MGD K03715 1,2-diacylglycerol 3-beta-galactosyltransferase
miR171i_1(7d vs 22d,7d vs 37d,22d vs 37d) XM_022121938.1 LCAT3 K22389 phospholipase A1
Fig. 1 Clustering heat map of expression of differentially expressed miRNA related to lipid metabolism
Note: The average value of the three biological replicates is taken as the expression level of the sample. The color in the figure indicates log2 value of the fold change of the expression levels between the samples, i.e. log2 fold change)

图1 油脂代谢相关差异表达miRNA的表达聚类热图

注:样本表达量取三次生物学重复的平均值,图中颜色表示样本间表达量的差异倍数取log2值,即log2 fold change)

Full size|PPT slide

2.2 高油酸向日葵种子三个发育时期脂肪酸组成和油分含量分析

对高油酸向日葵L-1-OL-1种子发育三个关键时期7 DAF、22 DAF和37 DAF的37种脂肪酸含量进行测定,共检测出13种脂肪酸。从表2可以看出,向日葵L-1-OL-1种子中主要脂肪酸为C18:1、C18:2和C16:0。7 DAF种子中检测出9种脂肪酸,除含有较多C18:1、C18:2和C16:0外,C10:0、C13:0和C18:3相对含量较高;22 DAF种子在三个发育时期中包含脂肪酸种类最多,检测出12种脂肪酸;37 DAF种子中检测到的脂肪酸只有7种。通过以上结果发现,随着L-1-OL-1种子发育,C18:1占总脂肪酸的比例逐渐增大,而其它脂肪酸所占比例减小。
Table 2 Fatty acid composition and oil content analysis of sunflower seeds with high oleic acid at three development stages

表2 高油酸向日葵三个发育时期种子脂肪酸组成和油分含量分析

脂肪酸种类 /%

Fatty acid

开花后7 d

7 DAF

开花后22 d

22 DAF

开花后37 d

37 DAF

己酸 C6:0 0 0 0.37±0.03
癸酸 C10:0 6.61±0.09 1.31±0.19 0
月桂酸 C12:0 1.27±0.21 0.08±0.01 0
十三烷酸 C13:0 6.92±1.56 0.75±0.10 0
十五烷酸 C15:0 0 0.29±0.04 0
棕榈酸 C16:0 17.19±1.89 10.24±2.03 6.83±0.76
硬脂酸 C18:0 2.01±0.32 3.12±0.46 2.06±0.31
油酸 C18:1 11.45±2.1 50.84±4.68 70.19±5.89
亚油酸 C18:2 47.44±5.98 28.28±3.68 19.69±2.68
亚麻酸 C18:3 6.29±0.78 2.44±0.36 0.55±0.07
花生酸 C20:0 0.81±0.10 1.18±0.21 0
山嵛酸 C22:0 0 0.70±0.09 0.36±0.06
木蜡酸 C24:0 0 0.84±0.10 0
含油量 Oil content 3.51±0.4 15.34±1.80 31.95±2.23
注:表内数字表示三次生物学重复的平均值±标准误
Note: DAF: days after flowering; figures in the table indicate the mean value ± standard error of three biological replicates

2.3 油脂代谢通路中miRNA表达量与油脂含量的相关性分析

将靶基因注释到脂肪酸和三酰甘油合成通路中的22个DE miRNA在种子发育不同时期表达量与种子含油量和脂肪酸组分进行相关性分析(表3),结果发现除棕榈酸、油酸、亚油酸、亚麻酸,其它脂肪酸均发现了与其呈显著相关的miRNA,尤其己酸与miR172a3,十三烷酸与miR171b2呈极显著负相关,表明miR172a3和miR171b2很可能是分别调控己酸和十三烷酸的关键miRNA。同时发现油分含量与miR167d5p呈显著正相关,表明种子油分含量可能也受到miRNA的调控。这些结果为后续研究miRNA调控向日葵种子油脂合成分子机理提供参考。
Table 3 Correlation analysis between expression level of miRNAs in lipid metabolism pathway

表3 油脂代谢通路中miRNA表达量与脂肪酸含量的相关性分析 (and fatty acid content)

miRNA

己酸

C6:0

癸酸

C10:0

月桂酸

C12:0

十三烷酸

C13:0

十五烷酸

C15:0

棕榈酸

C16:0

硬脂酸

C18:0

油酸

C18:1

亚油酸

C18:2

亚麻酸

C18:3

花生酸

C20:0

山嵛酸

C22:0

木蜡酸

C24:0

油分

Oil

miR157a5p -0.574 -0.245 -0.371 -0.331 0.996 -0.107 0.992 0.107 -0.129 -0.107 0.797 0.810 0.996 -0.183
miR157d 0.160 -0.852 -0.914 -0.895 0.775 -0.770 0.799 0.770 -0.784 -0.770 0.150 0.990 0.775 0.555
miR6300 1.000* -0.638 -0.531 -0.567 -0.517 -0.740 -0.483 0.740 -0.725 -0.740 -0.958 -0.003 -0.517 0.902
miR171a3 0.465 -0.974 -0.995 -0.990 0.534 -0.933 0.567 0.933 -0.941 -0.933 -0.172 0.893 0.534 0.790
miR171b2 0.580 -0.996 -0.999* -1.000** 0.416 -0.973 0.452 0.973 -0.978 -0.973 -0.302 0.824 0.416 0.865
miR167a -0.052 0.790 0.864 0.842 -0.839 0.696 -0.860 -0.696 0.712 0.697 -0.256 -0.999* -0.839 -0.461
miR167a5p 0.822 -0.968 -0.927 -0.942 0.083 -0.994 0.123 0.994 -0.991 -0.994 -0.607 0.584 0.083 0.984
miR167a2 0.317 -0.925 -0.967 -0.955 0.663 -0.862 0.692 0.863 -0.874 -0.863 -0.011 0.954 0.663 0.681
miR167d5p 0.879 -0.936 -0.881 -0.900 -0.026 -0.976 0.014 0.976 -0.971 -0.976 -0.690 0.492 -0.026 0.997*
miR167d1 0.563 -0.994 -1.000* -1.000* 0.434 -0.968 0.469 0.968 -0.973 -0.968 -0.283 0.835 0.434 0.855
miR61115p -0.444 0.969 0.993 0.987 -0.554 0.924 -0.586 -0.924 0.932 0.924 0.149 -0.903 -0.554 -0.775
miR166u -0.381 -0.451 -0.565 -0.529 0.991 -0.321 0.996 0.321 -0.342 -0.322 0.646 0.918 0.991 0.036
miR164c1 -0.836 0.131 -0.001 0.042 0.893 0.269 0.874 -0.269 0.248 0.269 0.964 0.535 0.893 -0.534
miR169v1 0.631 -1.000* -0.995 -0.998* 0.357 -0.985 0.394 0.985 -0.989 -0.986 -0.362 0.786 0.357 0.895
miR397a3 0.313 -0.924 -0.966 -0.954 0.666 -0.860 0.695 0.861 -0.872 -0.861 -0.007 0.955 0.666 0.678
miR172a2 -0.530 -0.296 -0.419 -0.380 0.999* -0.159 0.997* 0.159 -0.181 -0.159 0.764 0.839 0.999* -0.131
miR172a3 -1.000** 0.653 0.548 0.583 0.500 0.753 0.465 -0.753 0.738 0.753 0.952 -0.016 0.500 -0.910
miR172c2 0.999* -0.628 -0.520 -0.556 -0.528 -0.731 -0.494 0.731 -0.716 -0.731 -0.961 -0.016 -0.528 0.896
miR396b -0.855 0.951 0.902 0.920 -0.021 0.985 -0.061 -0.985 0.981 0.985 0.655 -0.532 -0.021 -0.993
miR396b5p -0.965 0.430 0.308 0.348 0.711 0.553 0.682 -0.553 0.534 0.553 0.999* 0.248 0.711 -0.769
miR396e5p -0.987 0.523 0.406 0.444 0.633 0.637 0.602 -0.637 0.620 0.637 0.989 0.145 0.633 -0.832
miR171i1 -0.864 0.946 0.895 0.913 -0.04 0.982 -0.044 -0.982 0.978 0.982 0.668 -0.518 -0.004 -0.995
注:*表示相关性在0.05水平上显著;**表示相关性在0.01水平上显著
Note: * indicates that the correlation is significant at the level of 0.05; ** indicates that the correlation is significant at the level of 0.01

2.4 差异mRNA与miRNA共表达分析

基于前期转录组测序结果[14],根据相关性系数的正负关系,对miRNA及其靶基因的表达结果进行深入的筛选,筛选出呈负相关的共表达miRNA与靶基因,即miRNA与靶基因的相关性系数为负值,且在相同的差异组里面miRNA的差异倍数与靶基因的差异倍数为一正一负。三个比较组中分别有56(L7d vs L22d)、79(L7d vs L37d)、31(L22d vs L37d)个DE miRNA与靶基因呈负相关的共表达关系(表4)。
Table 4 Differential co-expression statistics of negatively correlated miRNA and target genes

表4 miRNA与靶基因呈负相关的差异共表达统计

比较组

Comparison group

共表达数量

Coexpression number

miRNA数量

Number of miRNAs

靶基因数量

Number of target genes

L7d vs L22d 407 56 239
L7d vs L37d 549 79 251
L22d vs L37d 121 31 80
将以上与miRNA呈负相关的靶基因利用KEGG数据库进行注释,在三个比较组中找到油脂代谢相关的靶基因,这些基因编码蛋白包括3-酮酰基-CoA合成酶(3-ketoacyl-CoA synthase),Δ-12-脂肪酸去饱和酶(delta-12-fatty acid desaturase),二酰甘油二磷酸磷酸酶(diacylglycerol diphosphate phosphatase),酰基-CoA氧化酶(acyl-CoA oxidase),3-氧酰基-酰基载体蛋白合成酶II(3-oxoacyl-ACP-synthase II)及长链酰基-CoA合成酶(long-chain acyl-CoA synthetase)(表5),这些基因的表达可能受到相应miRNA的调控。
Table 5 Negatively correlated co-expression of miRNA and target genes in lipid metabolism pathway

表5 油脂代谢途径中呈负相关的共表达miRNA和靶基因

mRNA ID miRNA ID

KEGG注释

KEGG annotation

比较组

Comparison group

XM_022179947.1 miR166u 3-ketoacyl-CoA synthase L7d vs L22d
XM_022180675.1 miR171b_2 delta(12) fatty acid desaturase L7d vs L22d
XM_022173175.1 miR397a_3 diacylglycerol diphosphate phosphatase

L7d vs L22d

L7d vs L37d

XM_022145134.1 miR157d acyl-CoA oxidase L7d vs L37d
XM_022138855.1 miR167a-5p 3-oxoacyl-[acyl-carrier-protein] synthase II

L7d vs L37d

L22d vs L37d

XM_022154765.1 miR169v_1 long-chain acyl-CoA synthetase L22d vs L37d

3 讨论与结论

小RNA(18~30 nt)由三大类组成,小干扰RNA(siRNA)、PIWI相互作用RNA(piRNA)和microRNA(miRNA),其中miRNA核苷酸长度主要为20~24 nt,通过对靶基因的序列特异性抑制使基因沉默来调节植物基因表达[16]。目前,向日葵中miRNA的鉴定和功能研究取得了一些成果,其中大多数是关于胁迫方面的研究,而种子发育和油脂代谢方面的研究未见报道。研究发现miR396对HaWRKY6表达的调控在向日葵对高温胁迫的早期反应中发挥了作用[17]。向日葵幼苗在干旱胁迫下,叶片中分别有54和25个miRNA上调和下调表达,根中分别有94个和10个miRNA上调和下调表达,共预测了1788个靶基因[18]。此外,在向日葵中发现了7个与干旱、高温、盐和镉胁迫相关的保守miRNA,通过GO分析确定了其靶基因参与几个重要途径,如生长素和乙烯信号、RNA介导的沉默和DNA甲基化过程[19]。前期研究我们通过高通量测序鉴定到268个miRNA,其中新的miRNA 98个,这些新预测的miRNA丰富了向日葵小RNA数据库,同时差异表达的miRNA为向日葵种子发育和油脂代谢调控机理的研究提供参考。
miRNA通过改变mRNA剪接或转录后加工发挥作用,参与多种生物过程,近年来,关于植物种子发育和油脂代谢相关miRNA的研究取得了一定进展。对油菜不同发育时期的角果进行miRNA测序,鉴定了一些与种子发育和油脂积累相关的miRNA[7~9]。油菜miR9563、miR838、miR156、miR159和miR1134参与乙酰辅酶A和碳链脱饱和酶的合成,调控长链脂肪酸生成、β-氧化和脂质代谢,可能影响油份积累[12]。油菜中发现,过表达miR394会改变脂肪酸组分,但靶基因过表达则不影响脂肪酸组成[19]。Zhao等[7]发现miR156、miR167和miR6029通过调控SPL家族、ARF家族和VIP1控制油菜的油分含量。大豆中也发现影响种子发育和油脂积累的miR156、miR159、miR166、miR167[11,20]。在亚麻荠中,过量表达miR167a改变了种子脂肪酸组成,过表达miR167a亚麻荠种子比对照种子的α-亚麻酸(ALA)含量降低[21]。过表达胡麻miR156a可以降低种子总含油量、α-亚麻酸、亚油酸和硬脂酸的含量,而过表达胡麻miR397b可以提高种子总含油量和α-亚麻酸含量[22]。本研究中发现比较组中差异表达的miR157、miR166、miR167、miR397富集在油脂代谢通路中,这四个miRNA在以上报道中证明与油分含量或脂肪酸组成相关,它们可能对向日葵油脂代谢也起到重要的调控作用,而我们还在油脂代谢通路中发现一些差异表达的miRNA,如miR6300、miR171、miR6111、miR396等,这些miRNA并未被报道过其表达影响油脂含量,这些miRNA的功能有待验证。本研究在油脂代谢通路中筛选到表达呈负相关的DE miRNA和靶基因,表明这些基因的差异表达可能是miRNA调控的结果,进而影响种子油脂代谢,这些结果为解析miRNA调控向日葵油脂代谢的分子机制奠定基础。
本研究基于前期向日葵种子三个发育时期miRNA测序的结果挖掘影响油脂合成代谢的miRNA,结果发现三组比较中参与油脂代谢通路的差异表达miRNA共有22个,表达量聚类热图分析发现,22d vs 37d比较组中大部分miRNA下调表达,表明油脂代谢相关的大部分miRNA在开花后37 d相比于22 d表达量降低。将靶基因注释到脂肪酸和三酰甘油合成通路中的22个差异表达miRNA在种子发育不同时期表达量与种子含油量和脂肪酸组分进行相关性分析,结果发现己酸与miR172a3,十三烷酸与miR171b2均呈极显著负相关,油分含量与miR167d5p呈显著正相关,表明这些miRNA可能参与油脂的合成。通过共表达分析发现,有6对油脂代谢相关的miRNA(miR166u、miR171b_2、miR397a_3、miR157d、miR167a-5p、miR169v_1)与其靶基因呈负相关的共表达关系,表明这些基因的差异表达可能是miRNA调控的结果。本研究结果将为miRNA在植物油脂合成过程中的作用提供科学依据。

References

1
周菲, 王文军, 刘岩, 等. 向日葵籽仁脂肪和脂肪酸含量近红外光谱模型的建立 [J]. 作物杂志20212: 200-206. DOI: 10.16035/j.issn.1001-7283.2021.02.029 .
2
马方, 杨宜婷, 陈则华. 不同类型n-3多不饱和脂肪酸对心血管疾病的防治作用及其机制研究进展 [J]. 中国油脂201843(2): 65-69. DOI: 10.3969/j.issn.1003-7969.2018.02.015 .
3
Parisi S Hu M Jacobsen C.(Eds.) Oxidative stability and shelf life of foods containing oils and fats [J]. Anal Bioanal Chem2016408(27): 7549-7550. DOI: 10.1007/s00216-016-9875-3 .
4
Zhou F Liu Y Liang C, et al. Construction of a high-density genetic linkage map and QTL mapping of oleic acid content and three agronomic traits in sunflower (Helianthus annuus L.) using specific-locus amplified fragment sequencing (SLAF-seq) [J]. Breeding Sci201868(5): 596-605. DOI: 10.1270/jsbbs.18051 .
5
黄俊骏, 刘文文, 郭亚如, 等, microRNA在植物生长发育中的研究进展 [J]. 生物技术通报201935(11): 141-149. DOI: 10.13560/j.cnki.biotech.bull.1985.2019-0526 .
6
Poudel S Aryal N Lu C, et al. Identification of microRNAs and transcript targets in Camelina sativa by deep sequencing and computational methods [J]. PLOS One201510(3): e0121542. DOI: 10.1371/journal.pone.0121542 .
7
Zhao Y T Wang M Fu S X, et al. Small RNA profiling in two Brassica napus cultivars identifies microRNAs with oil production- and development-correlated expression and new small RNA classes [J]. Plant physiol2011158(2): 813-823. DOI: 10.2307/41435410 .
8
Wang J Jian H Wang T, et al. Identification of microRNAs actively involved in fatty acid biosynthesis in developing Brassica napus seeds using high-throughput sequencing [J]. Front Plant Sci20167: 1570. DOI: 10.3389/fpls.2016.01570 .
9
Zhang J Wang Z Shi J, et al. Genome wide identification of microRNAs involved in fatty acid and lipid metabolism of Brassica napus by small RNA and degradome sequencing [J]. Gene2017619: 61-70. DOI: 10.1016/j.gene.2017.03.040 .
10
Shamimuzzaman M Vodkin L. Identification of soybean seed developmental stage-specific and tissue-specific miRNA targets by degradome sequencing [J]. BMC Genomics201213(1): 310. DOI: 10.1186/1471-2164-13-310 .
11
Zhao Y F Peng T Sun H Z, et al. MiR1432-OsACOT (Acyl-CoA thioesterase) module determines grain yield via enhancing grain filling rate in rice [J]. Plant Biotechnol J201817(4): 712-723. DOI: 10.1111/pbi.13009 .
12
Khaksefidi R Mirlohi S Khalaji F, et al. Differential expression of seven conserved microRNAs in response to abiotic stress and their regulatory network in Helianthus annuus [J]. Front Plant Sci20156: 741. DOI: 10.3389/fpls.2015.00741 .
13
崔良基, 王德兴, 宋殿秀. 国内外向日葵遗传改良成就与发展趋势[J]. 杂粮作物200626(6): 402-406. DOI: 10.3969/j.issn.2095-0896.2006.06.009 .
14
Liu Y Zhou F Huang X, et al. Identification and integrated analysis of mRNAs, lncRNAs, and microRNAs of developing seeds in high oleic acid sunflower (Helianthus annuus L.) [J]. Acta Physiol Plant202143: 85. DOI: 10.1007/s11738-021-03259-5 .
15
Gaál Z Fodor J Oláh A, et al. Evaluation of muscle-specific and metabolism regulating microRNAs in a chronic swimming rat model [J]. J Muscle Res Cell Motil202243: 21-33. DOI: 10.1007/s10974-021-09612-y .
16
Debat H J Ducasse D A. Plant microRNAs: recent advances and future challenges [J]. Plant Mol Biol Rep 201432: 1257-1269. DOI: 10.1007/s11105-014-0727-z .
17
Giacomelli J I Weigel D Chan R L, et al. Role of recently evolved miRNA regulation of sunflower HaWRKY6 in response to temperature damage [J]. New Phytol2012195: 766-773. DOI: 10.1111/j.1469-8137.2012.04259.x
18
Liang C Wang W Ma J, et al. Identification of differentially expressed microRNAs of sunflower seedlings under drought stress [J]. Agron J2020112: 2472-2484. DOI: 10.1002/agj2.20254 .
19
Song J B Shu X X Shen Q, et al. Altered fruit and seed development of transgenic rapeseed (Brassica napus) over-expressing microRNA394 [J]. PLOS One201510(5): e0125427. DOI: 10.1371/journal.pone.0125427 .
20
Song Q X Liu Y F Hu X Y, et al. Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing [J]. BMC Plant Biol201111(1): 5. DOI: 10.1186/1471-2229-11-5 .
21
Na G N Mu X Grabowski P, et al. Enhancing microRNA167A expression in seed decreases the α-linolenic acid content and increases seed size in Camelina sativa [J]. Plant J201998(2): 346-358. DOI: 10.1111/tpj.14223
22
张天豹. 胡麻种子发育和脂肪酸代谢相关microRNAs的鉴定和功能分析 [D]. 北京: 中国农业科学院, 2020.
PDF(1102 KB)

450

Accesses

0

Citation

Detail

Sections
Recommended

/