
Investigation on the relationship between stem and leaf metabolites and tuber morphology of Cyperus esculentus
Jian-nan MA, Cheng-bin SHAN, Xu FENG, Yue MA, Li-wei WANG, Xiang-qian ZHANG, Xiao-qing ZHAO, Zhan-yuan LU, De-jian ZHANG, Chao-mei MA
CHINESE JOURNAL OF OIL CROP SCIENCES ›› 2024, Vol. 46 ›› Issue (1) : 62-71.
Investigation on the relationship between stem and leaf metabolites and tuber morphology of Cyperus esculentus
To better utilize the stem and leaf of Cyperus esculentus and facilitate its crop breeding, relationship was studied between phenotypic features and stem-and-leaf metabolites, by investigating phenotypic parameters of 10 cultivars. The parameters including leaf width, tuber width, tuber thickness and tuber height, were compared and analyzed. Stem and leaf metabolites were qualitatively and quantitatively analyzed by ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Results showed that 10 cultivars of C. esculentus were divided into 2 phenotypes, namely wide-leaf round-tuber type and narrow-leaf long-tuber type. Their leaf width was positively correlated with tuber width and tuber thickness. Relative contents of 28 main metabolites were discovered and investigated including flavane-3-ols, caffeic acids and flavonoids. Results showed that the contents of 4 flavonoids (luteolin 7-O-diglucuronide, luteolin 8-C-glucoside, luteolin 7-glucuronide, and luteolin) were significantly higher in wide-leaf round-tuber C. esculentus leaves. Biosynthesis pathways of the 4 differential flavonoids metabolites were deduced and mapped using KEGG and PlantCyc. It was predicted that the wide-leaf round-tuber type was more drought-tolerant than the narrow-leaf long-tuber ones.
Cyperus esculentus L. / morphology / secondary metabolites / UHPLC-MS/MS {{custom_keyword}} /
Table 1 Ultra-high performance liquid chromatography表1 超高效液相梯度洗脱程序 |
时间 Time /min | A相 Solvent A /% | B相 Solvent B /% |
---|---|---|
0.00 | 99.0 | 1.0 |
10.00 | 80.0 | 20.0 |
15.00 | 65.0 | 35.0 |
18.00 | 0.0 | 100.0 |
22.00 | 0.0 | 100.0 |
22.01 | 99.0 | 1.0 |
25.00 | 99.0 | 1.0 |
Fig. 1 Plants and tubers of Cyperus esculentus图1 油莎豆植株与块茎 |
Table 2 Phenotypic information of 10 C. esculentus cultivars表2 供试10份油莎豆种质资源的表型 |
资源 Accesion | 粒型 Tuber type | 叶宽度 Leaf with /mm | 块茎宽度 Tuber with (TW) /mm | 块茎厚度 Tuber thickness (TT) /mm | 块茎高度 Tuber height (TH) /mm | TW/TT | TH/TW | TH/TT |
---|---|---|---|---|---|---|---|---|
JYD-3 | 长粒Long | | | | | | | |
JYD-5 | 长粒Long | | | | | | | |
JYD-7 | 长粒Long | | | | | | | |
JYD-12 | 长粒Long | | | | | | | |
JYD-14 | 长粒Long | | | | | | | |
JYD-20 | 长粒Long | | | | | | | |
平均值 Ave. | | | | | | | | |
JYD-6 | 圆粒 Round | | | | | | | |
JYD-9 | 圆粒 Round | | | | | | | |
JYD-10 | 圆粒 Round | | | | | | | |
JYD-17 | 圆粒 Round | | | | | | | |
平均值Ave. | | | | | | | |
Table 3 Parent and product ions used for quantification of the major metabolites in C. esculentus leaves表3 油莎豆地上茎叶主要二次代谢物定量所用母离子和子离子 |
峰号 No. | 保留时间 tR /min | 质荷比 Parent ion /(m/z) | 特征碎片离子对 Product ion-pairs a /(m/z) | 成分 Compoundb |
---|---|---|---|---|
1 | 0.53 | 377.1 | 341.0, 215.0 | 葡萄糖 Sucrose* |
2 | 0.53 | 191.1 | 85.1, 93.1 | 奎宁酸 Quinic acid* |
3 | 0.58 | 133.1 | 115.1, 71.1 | 苹果酸 Malic acid* |
4 | 0.98 | 191.1 | 111.0, 87.0 | 柠檬酸 Citric acid* |
5 | 2.22 | 371.1 | 209.0, 191.0 | 咖啡酰葡糖二酸异构体1 Caffeoylglucaric acid isomer 1 |
6 | 2.67 | 164.0 | 147.0, 103.0 | L-苯丙氨酸 L-Phenylalanine* |
7 | 4.04 | 305.1 | 125.1, 219.1 | (+)-没食子儿茶素 (+)-Gallocatechin* |
8 | 4.66 | 593.1 | 304.9, 422.8 | (表)儿茶素-(表)没食子儿茶素 (Epi)catechin-(epi)gallocatechin |
9 | 5.06 | 371.1 | 209.0, 191.0 | 咖啡酰葡糖二酸异构体2 Caffeoylglucaric acid isomer 2 |
10 | 5.02 | 203.0 | 116.0, 74.0 | L-色氨酸 L-Tryptophan* |
11 | 6.79 | 577.1 | 289.0, 407.0 | 原花青素B1 Procyanidin B1* |
12 | 7.41 | 289.1 | 245.1, 203.1 | 儿茶素 Catechin* |
13 | 7.59 | 305.1 | 125.1, 219.1 | (-)-表没食子儿茶素 (-)-Epigallocatechin* |
14 | 8.40 | 561.1 | 289.0, 435.0 | (表)阿夫儿茶素-(表)儿茶素 (Epi)afzelechin–(epi)catechin |
15 | 8.43 | 353.1 | 191.1 | 绿原酸 Chlorogenic acid* |
16 | 9.19 | 353.1 | 173.0, 179.0 | 隐绿原酸 Cryptochlorogenic acid* |
17 | 10.54 | 353.1 | 191.1 | 顺式-5-咖啡酰奎宁酸 cis-5-Caffeoylquinic acid* |
18 | 10.73 | 337.2 | 191.2, 173.1 | 3-对香豆酰基奎宁酸 3-p-Coumaroylquinic acid* |
19 | 11.19 | 577.1 | 289.1, 407.0 | B型原花青素二聚体 Procyanidin B isomer* |
20 | 11.87 | 335.2 | 179.1, 135.1 | 5-O-咖啡酰莽草酸 5-O-Caffeoylshikimic acid* |
21 | 12.63 | 337.2 | 191.2, 173.1 | 对香豆酰基奎宁酸异构体 p-Coumaroylquinic acid isomer* |
22 | 14.02 | 637.0 | 351.0, 285.0 | 木犀草素-7-二葡萄糖醛酸苷 Luteolin 7-O-diglucuronide* |
23 | 14.24 | 447.1 | 327.0, 357.0 | 荭草苷 Luteolin 8-C-glucoside* |
24 | 15.75 | 461.0 | 285.0 | 木犀草素-7-葡萄糖醛酸苷 Luteolin 7-glucuronide* |
25 | 17.35 | 285.1 | 133.1, 151.1 | 木犀草素 Luteolin* |
26 | 17.80 | 327.3 | 211.2, 229.2 | FA 18:2+3O |
27 | 19.07 | 277.3 | / | α-亚麻酸 α-Linolenic acid* |
28 | 19.18 | 279.3 | / | 亚油酸 Linoleic acid* |
Fig. 5 Deduced biosynthesis pathways of 4 differential flavonoids metabolites (blue/red structure) identified in C. esculentus leaves with different tuber morphology图5 推导不同粒型油莎豆茎叶中4个黄酮类差异代谢物(蓝/红色结构)合成途径 |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
江苏省植物研究所, 中国医学科学院药用植物资源开发研究所, 中国科学院昆明植物研究所, 中国医学科学院药物研究所. 新华本草纲要(第三册)[M]. 上海:上海科学技术出版社, 1993. 563.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
陆雨顺, 赵丽娟, 宫瑞泽, 等. 柱前衍生-超高效液相色谱法测定油莎豆饼粕中17种氨基酸的含量[J]. 特产研究, 2019, 41(4): 75-79. DOI:10.16720/j.cnki.tcyj.2019.04.016 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
师茜, 田丽萍, 薛琳, 等. 油莎豆油与其他植物油主要脂肪酸的分析比较[J]. 食品工业, 2016, 37(1): 52-54.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
杨向东, 李子勇. 我国油莎豆产业发展现状、潜力及对策[J]. 中国油料作物学报, 2022, 44(4):712-717.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
姜华武, 吴平治, 杨天顺, 等. 我国油莎豆栽培品系表型特征的相关性分析[J]. 热带亚热带植物学报, 2022, 30(5): 636-644.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
马紫薇, 牛陆, 杨向东, 等. 油莎豆种质资源表型性状遗传多样性分析及综合评价[J/OL]. 草地学报, 2022: 1-16. (2022-06-14).
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
焦兵阳, 魏尊苗, 弥震, 等. 油莎豆块茎转录组测序分析与油脂合成相关基因的挖掘[J/OL]. 分子植物育种, 2021: 1-14. (2021-07-23).
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
王一非, 门婧婕, 张笑笑, 等. 油莎草(Cyperus esculentus)MADS-box转录因子家族鉴定及表达分析[J/OL]. 分子植物育种, 2021: 1-15. (2021-07-09).
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
魏尊苗, 王占海, 杨向东, 等. 油莎豆种质资源遗传多样性的RAPD分析[J]. 分子植物育种, 2021, 19(16): 5428-5434. DOI:10.13271/j.mpb.019.005428 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
赵永国, 郭瑞星, 罗丽霞. 油莎豆SRAP指纹图谱构建及遗传多样性分析[J]. 植物遗传资源学报, 2013, 14(2): 222-225. DOI:10.13430/j.cnki.jpgr.2013.02.018 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
毛琳萍, 仲晓芳, 杨向东, 等. 利用SSR标记分析油莎豆种质资源的遗传多样性[J/OL]. 分子植物育种, 2022: 1-12. (2022-03-25).
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
34 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
35 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
36 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
37 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |