
Effects of salt/alkali-tolerant phosphate-solubilizing bacteria on lipid metabolome of soybean seedlings
Mei-zhen ZHANG, Li-na WANG, Wei ZHAO, Di GAO, Yu-xian ZHANG, Kui-de YIN
CHINESE JOURNAL OF OIL CROP SCIENCES ›› 2023, Vol. 45 ›› Issue (6) : 1284-1294.
Effects of salt/alkali-tolerant phosphate-solubilizing bacteria on lipid metabolome of soybean seedlings
Lipid metabolism plays an important role in plant response to abiotic stress. Four salt/alkali-tolerant phosphate-solubilizing bacteria strains (W5, Y7, Y14 and Y31, with Latin names of Bacillus siamensis, Pseudomonas sp., B. wiedmannii and Acinetobacter sp., respectively) screened in the previous study were used for soybean pot experiment to investigate the effects of phosphate-solubilizing bacteria (PSB) on the growth of soybean plants under salt/alkali conditions, and to analyze the changes of lipid compounds in soybean leaves. The results showed that the chlorophyll content, plant height, root length, shoot fresh weight, shoot dry weight, root fresh weight and root dry weight of soybean were increased after trwatment with the four strains, and the Y7 strain treatment group had the best effect. The Y7 strain treatment group was selected for soybean leaf lipid metabolism analysis. It showed that a total of 429 lipids were detected, and 30 significantly different metabolites (16 up-regulated and 14 down-regulated) were screened in the Y7 strain treatment group. The metabolic pathways with the largest enrichment of differential metabolic pathways were glyceride metabolism from lipid metabolism, in which the content of diglyceride (DG) was significantly increased, the content of triglyceride (TG) was significantly decreased, and the total content of phosphatidylethanolamine (PE), phosphatidylcholine (PC) and phosphatidylserine (PS) was significantly increased, and the total content of phosphatidic acid (PA) and phosphatidylinositol (PI) total compounds was significantly decreased. The comprehensive results showed that salt/alkali-tolerant phosphate-solubilizing bacteria applied to salt/alkali soil had obvious growth promotion effect on soybean and affected soybean leaf lipid metabolic pathways and products.
phosphate-solubilizing bacteria / soybean / growth promotion / lipid metabolome {{custom_keyword}} /
Table 1 Physical and chemical properties of soil in pot experiment表1 盆栽试验土壤理化性质 |
pH | 碱解氮含量/(mg/kg) Available N content | 有效磷含量/(mg/kg) Available P content | 速效钾含量/(mg/kg) Available K content | 有机质含量/(mg/kg) Organic matter content | 可溶性盐含量/% Soluble salt content |
---|---|---|---|---|---|
8.48 | 115.0 | 16.5 | 267 | 31.20 | 0.15 |
Fig. 1 Effect of saline-alkali-tolerant phosphate-solubilizing bacteria on soybean growth图1 耐盐碱溶磷菌对大豆生长情况的影响 |
Table 2 Effects of saline-alkali tolerant phosphate-solubilizing bacteria on soybean biomass表2 耐盐碱溶磷菌对大豆生物量的影响 |
处理 Treatment | 叶绿素含量(SPAD) Chlorophyll content | 株高/cm Plant height | 根长/cm Root length | 地上部鲜重/g Aboveground fresh weight | 地上部干重/mg Aboveground dry weight | 根鲜重/g Fresh root | 根干重/mg Root dry weight |
---|---|---|---|---|---|---|---|
CK | 42.62±2.75c | 13.41±1.43c | 8.65±1.13b | 0.85±0.13c | 187.93±20.44b | 0.30±0.10c | 40.93±10.31c |
T1 | 42.71±2.82c | 19.70±1.67a | 9.12±1.20ab | 1.42±0.12a | 309.73±55.38a | 0.41±0.09ab | 56.40±9.69ab |
T2 | 48.25±2.92a | 19.62±1.43a | 9.79±1.49a | 1.40±0.20a | 301.73±23.11a | 0.48±0.10a | 62.93±7.98a |
T3 | 44.88±1.96bc | 15.09±2.38b | 9.08±0.77ab | 1.10±0.28b | 253.97±47.43b | 0.36±0.07bc | 49.87±10.82b |
T4 | 46.72±3.00ab | 19.50±1.29a | 9.57±1.67ab | 1.31±0.20a | 282.33±27.48a | 0.37±0.10bc | 50.47±11.57b |
Table 3 Trends in glycerides表3 甘油酯类变化趋势 |
代谢物名称 Name of metabolite | 保留时间/min Retention time | 质荷比(m/z)Mass-to-charge ratio | CK组代谢产物平均表达量 Mean expression of metabolites in CK group | T2组代谢产物平均表达量 Mean expression of metabolites in T2 group | VIP值 VIP value | p值 P value |
---|---|---|---|---|---|---|
DG 36:6(18:3/18:3) | 7.29 | 630.51 | 208.72±56.43 | 387.16±43.15 | 4.86 | 0.002394557 |
DG 36:5(18:3/18:2) | 7.65 | 632.52 | 109.07±7.26 | 130.50±7.15 | 1.65 | 0.005657757 |
DG 15:0 | 1.22 | 348.27 | 41.03±3.14 | 23.08±2.71 | 1.59 | 0.000130687 |
TG 36:5(4:0/15:2/17:3) | 6.14 | 646.50 | 17.95±4.54 | 27.40±3.40 | 1.05 | 0.0157926 |
TG 52:5(16:0/18:2/18:3) | 10.56 | 870.75 | 75.35±5.07 | 57.52±11.58 | 1.41 | 0.030282255 |
TG 56:11(18:3/18:3/20:5) | 10.07 | 897.70 | 78.10±6.66 | 54.49±0.36 | 1.82 | 0.000399524 |
TG 54:4(18:0/18:2/18:2) | 11.16 | 900.80 | 40.14±4.33 | 25.63±4.80 | 1.37 | 0.004164083 |
TG 54:5(18:1/18:2/18:2) | 10.89 | 898.79 | 114.13±10.52 | 66.45±6.99 | 2.58 | 0.000279598 |
TG 54:7(18:3/18:2/18:2) | 10.34 | 894.75 | 562.06±55.48 | 234.11±18.17 | 6.86 | 2.97116E-05 |
TG 54:8(18:3/18:2/18:3) | 10.06 | 892.74 | 624.74±70.62 | 258.28±27.29 | 7.22 | 6.96748E-05 |
Table 4 Trends in glycerophosphatide metabolites表4 甘油磷脂代谢物变化趋势 |
代谢物名称 Name of metabolite | 保留时间/min Retention time | 质荷比(m/z)Mass-to-charge ratio | CK组代谢产物平均表达量 Mean expression of metabolites in CK group | T2组代谢产物平均表达量 Mean expression of metabolites in T2 group | VIP值 VIP value | p值 P value |
---|---|---|---|---|---|---|
PE 31:0 | 7.33 | 678.51 | 81.46±20.80 | 154.20±11.17 | 3.16 | 0.000837827 |
PE 33:1 | 7.22 | 704.52 | 35.23±7.93 | 50.82±7.72 | 1.31 | 0.030453432 |
PC 30∶1(18:1/12:0) | 7.43 | 704.52 | 37.53±10.89 | 68.98±7.60 | 2.03 | 0.003206859 |
PA 34∶1(16:0/18:1) | 7.50 | 673.48 | 33.22±6.30 | 48.76±3.99 | 1.40 | 0.005903348 |
PA 34∶2(16:0/18:2) | 7.23 | 671.47 | 61.16±8.79 | 42.05±5.89 | 1.54 | 0.011185183 |
PA 36∶4(18:2/18:2) | 6.97 | 695.47 | 26.90±6.16 | 13.98±5.69 | 1.22 | 0.021658946 |
PS 47:4 | 7.53 | 960.67 | 109.59±8.68 | 138.52±12.04 | 1.89 | 0.008001489 |
PS 47:7 | 6.33 | 954.62 | 582.23±14.12 | 666.61±53.94 | 3.10 | 0.023201745 |
PI 34:3(16:0/18:3) | 6.49 | 831.50 | 271.76±8.83 | 219.94±9.00 | 2.70 | 0.000174556 |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
王遵亲. 中国盐渍土[M]. 北京: 科学出版社, 1993.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
初旭, 胡霞, 刘静, 等. 杉木根际溶磷菌的筛选鉴定及溶磷能力分析[J]. 西南林业大学学报: 自然科学, 2021, 41(2): 85-92. DOI: 10.11929/j.swfu.201912053 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
严花, 单进军, 赵霞. 代谢组学和脂质组学在哮喘研究中的应用进展[J]. 南京中医药大学学报, 2019, 35(5): 552-561. DOI: 10.14148/j.issn.1672-0482.2019.0552 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
郑韶爵, 朱厚荣, 罗佳佳, 等. 大叶山蚂蝗叶片响应缺磷胁迫的脂质代谢组分析[J]. 草地学报, 2022, 30(6): 1460-1467. DOI: 10.11733/j.issn.1007-0435.2022.06.017 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
朱文娜, 龚一富, 郭芮栋, 等. 磷限制对三角褐指藻脂质含量及相关基因表达的影响[J]. 中国粮油学报, 2021, 36(7): 93-99. DOI: 10.3969/j.issn.1003-0174.2021.07.017 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
王楠, 袁宝琪, 刘文博, 等. 轮作和连作下大豆产量性状的QTL分析[J]. 沈阳农业大学学报, 2022, 53(1): 83-88. DOI: 10.3969/j.issn.1000-1700.2022.01.010 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
武志海, 刘晶晶, 付丽, 等. 溶磷菌对大豆根际土壤酶活性及微生物群落的影响[J]. 中国农业大学学报, 2017, 22(11): 58-67. DOI: 10.11841/j.issn.1007-4333.2017.11.06 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
李悦, 蔡亚南, 任安琦, 等. 盐碱胁迫对元宝枫幼苗生长和生理特性的影响[J]. 东北林业大学学报, 2022, 50(8): 5-14, 21. DOI: 10.13759/j.cnki.dlxb.2022.08.002 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
龚远博, 胡吉怀, 胡丁猛, 等. 丛枝菌根真菌对盐碱胁迫下杜梨幼苗生长和生理特性的影响[J]. 西北植物学报, 2022, 42(8): 1320-1329. DOI: 10.7606/j.issn.1000-4025.2022.08.1320 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
王艳宇, 刘爽, 李鑫, 等. 3株耐盐碱促生菌对绿豆根际微生态的影响[J]. 干旱地区农业研究, 2022, 40(1): 139-145. DOI: 10.7606/j.issn.1000-7601.2022.01.16 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
李章雷, 刘爽, 王艳宇, 等. 5株耐盐碱促生细菌的筛选鉴定及其对红小豆的促生作用[J]. 微生物学通报, 2021, 48(5): 1580-1592. DOI: 10.13344/j.microbiol.china.200760 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
邵德义, 高钢, 喻春明. 脂质调控植物低氧信号的作用及其在苎麻育种研究中的展望[J]. 中国麻业科学, 2022, 44(1): 55-62. DOI: 10.3969/j.issn.1671-3532.2022.01.008 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
万思迪,朱恩恒,向霞,等.甘油二酯的合成、代谢及应用研究进展[J/OL].中国粮油学报:1-12[2022-10-22].
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
高正松, 王保成, 徐松泉, 等. 甘油二酯的合成及纯化研究进展[J]. 广州化工, 2020, 48(17): 4-8.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
34 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
35 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
36 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
37 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
38 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
39 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |