
Effects of soil-applied herbicides on bacterial community structure and diversity of rapeseed field soil
Yi LI, Wei-wei QIN, Ti-rong REN, Jia-sen CHENG, Hao LIU, Jun-bin HUANG, Lu ZHENG
CHINESE JOURNAL OF OIL CROP SCIENCES ›› 2024, Vol. 46 ›› Issue (2) : 324-333.
Effects of soil-applied herbicides on bacterial community structure and diversity of rapeseed field soil
Soil sealing treatment is an effective chemical weed control method in rapeseed field. To evaluate the effects of different soil-applied herbicides on soil microorganisms in rapeseed field, 16S rRNA amplicon sequencing was used to analyze the changes in soil microbial structure and diversity after treatment with four commonly used soil-applied herbicides alachlor, acetochlor, metochlor and s-metolachlor. The results showed that soil-applied herbicide treatments could significantly reduce soil bacterial diversity in rapeseed fields, and alachlor had the greatest effect on soil bacterial diversity. However, after a period of herbicide treatment, the diversity and richness of the soil bacterial community gradually recovered. Soil-applied herbicide treatment had great influence on Actinomycetes, Acidobacteria and others in rapeseed soil, and alachlor treatment showed the greatest change in soil bacteria at phylum level compared with other herbicides. After 60 days of treatment with soil-applied herbicides, the abundances of functional bacteria related to pollutant degradation, denitrification, photosynthesis, pathogen growth inhibition and rhizosphere growth promotion were increased, whereas functional bacteria associated with the absorption of nutrients and excretion of metabolites were reduced. Overall, the results indicated that the soil-applied herbicides had a certain effect on soil microbial diversity and community structure in rapeseed field, but the effect of herbicides on soil microbial diversity gradually decreased along with the time of treatment.
rapeseed / soil sealing / herbicide / microbial community / microbial diversity {{custom_keyword}} /
Table 1 Herbicide treatments and sampling times表1 封闭型除草剂处理及取样时间 |
处理 Treatment | 药剂 Herbicide dosage | 用量 /(mg /盆 ) Herbicide dosage / (mg / pot ) | 取样时间 Sampling time (days after treatment ) |
---|---|---|---|
IS | 无 Without | 初始土壤 Initial soil | |
CK30 | 无 Without | 30 | |
CK60 | 无 Without | 60 | |
AL30 | 43%甲草胺 43% alachlor | 10 | 30 |
AL60 | 43%甲草胺 43% alachlor | 10 | 60 |
Y30 | 720 g/L异丙甲草胺 720 g/L acetochlor | 20 | 30 |
Y60 | 720 g/L异丙甲草胺 720 g/L acetochlor | 20 | 60 |
AC30 | 900 g/L乙草胺 900 g/L metochlor | 15 | 30 |
AC60 | 900 g/L乙草胺 900 g/L metochlor | 15 | 60 |
M30 | 960 g/L精异丙甲草胺 960 g/L s-metolachlor | 15 | 30 |
M60 | 960 g/L精异丙甲草胺 960 g/L s-metolachlor | 15 | 60 |
Table 2 Quality control and preprocessing of high-throughput sequencing datasets表2 扩增子测序数据的质控和预处理 |
处理 Treatment | 总序列数 Total sequence number | 有效序列数 Valid sequence number | 平均序列长度/nt Mean sequence length | 有效率/% Validation rate |
---|---|---|---|---|
IS | 60 195 | 57 728 | 416 | 95.90 |
47 101 | 45 018 | 416 | 95.58 | |
44 096 | 42 600 | 416 | 96.61 | |
CK30 | 57 566 | 55 778 | 416 | 96.89 |
57 845 | 56 197 | 415 | 97.15 | |
52 722 | 51 292 | 416 | 97.29 | |
CK60 | 69 479 | 67 018 | 416 | 96.46 |
84 263 | 82 512 | 416 | 97.92 | |
78 388 | 76 420 | 416 | 97.49 | |
AL30 | 50 820 | 49 176 | 415 | 96.77 |
48 289 | 46 535 | 416 | 96.37 | |
58 981 | 56 941 | 415 | 96.54 | |
AL60 | 51 301 | 49 990 | 416 | 97.44 |
53 653 | 52 512 | 416 | 97.87 | |
47 653 | 46 629 | 415 | 97.85 | |
Y30 | 52 940 | 51 189 | 416 | 96.69 |
50 345 | 48 985 | 416 | 97.30 | |
53 844 | 52 014 | 417 | 96.60 | |
Y60 | 63 173 | 60 950 | 416 | 96.48 |
83 705 | 81 251 | 416 | 97.07 | |
74 268 | 72 417 | 416 | 97.51 | |
AC30 | 60 188 | 58 562 | 416 | 97.30 |
58 820 | 57 332 | 416 | 97.47 | |
56 323 | 54 833 | 415 | 97.35 | |
AC60 | 77 772 | 75 665 | 416 | 97.29 |
81 608 | 80 157 | 416 | 98.22 | |
78 821 | 76 788 | 416 | 97.42 | |
M30 | 47 463 | 45 796 | 415 | 96.49 |
47 891 | 46 515 | 415 | 97.13 | |
44 986 | 43 321 | 416 | 96.30 | |
M60 | 65 669 | 63 322 | 416 | 96.43 |
74 374 | 72 194 | 417 | 97.07 | |
53 639 | 50 692 | 415 | 94.51 |
Table 3 OTUs, richness and diversity index for bacterial communities from different soil-applied herbicide treatments表3 经土壤封闭除草剂处理的油菜土壤细菌群落OTU、多样性和丰富度指数 |
处理 Treatment | OTU数目 OTU number | Chao1指数 Chao1 index | Shannon指数 Shannon index | Simpson指数 Simpson index |
---|---|---|---|---|
IS | 6602 | 5113.6±681ab | 10.35±0.19abc | 0.9961±0.0007cde |
CK30 | 4650 | 5057.69±233ab | 10.27±0.05bc | 0.9966±0.0002abcde |
CK60 | 5078 | 5085.64±104ab | 10.31±0.06bc | 0.9963±0.0003bcde |
AL30 | 3735 | 4340.61±253cd | 10.21±0.12bcd | 0.9971±0.0004abc |
AL60 | 4933 | 5222.47±414a | 10.26±0.25bc | 0.9959±0.0012de |
Y30 | 4480 | 4944.04±375abc | 10.28±0.15bc | 0.9968±0.0006abcd |
Y60 | 5581 | 5450.57±140a | 10.52±0.14a | 0.9974±0.0010ab |
AC30 | 4290 | 4594.94±74bcd | 10.18±0.03cde | 0.9966±0.0006abcde |
AC60 | 4776 | 5521.80±248a | 10.48±0.03ab | 0.9976±0.0001a |
M30 | 5084 | 4195.4±659d | 10.01±0.18de | 0.9956±0.0005e |
M60 | 6456 | 5280.06±223a | 10.43±0.05ab | 0.9975±0.0001a |
Fig. 5 Principal component analysis (PCA) of bacteria in soil samples treated with different soil-applied herbicides图5 不同土壤封闭型除草剂处理土壤细菌的PCA分析 |
1 |
周永明, 傅廷栋. 中国油菜品种的遗传改良[C]//第十二届国际油菜大会论文集. 武汉, 2007: 1093-1095, 79.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
鲁剑巍, 王积军, 任涛. 开展油菜减肥减药技术研究促进油菜产业高产高效绿色发展[J]. 中国农技推广, 2019, 35(S1): 182-183.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
曹璞, 沈益新. 狗牙根对5种禾本科杂草化感作用的研究[J]. 草地学报, 2010, 18(3): 452-455. DOI: 10.11733/j.issn.1007-0435.2010.03.026 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
陈波, 徐冬梅, 吴军林, 等. 异丙甲草胺对根际土壤微生物数量的影响及其在根际环境中的降解研究[J]. 农业环境科学学报, 2006, 25(4): 898-902. DOI: 10.3321/j.issn: 1672-2043.2006.04.016 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
宋文钰, 吴彩兰, 党富民, 等. 精异丙甲草胺对甜菜田土壤主要微生物种群数量的影响[J]. 新疆农业科学, 2018, 55(10): 1879-1887. DOI: 10.6048/j.issn.1001-4330.2018.10.014 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
许艳蕊. 玉米根系及土壤细菌群落动态变化对除草剂的响应规律研究[D]. 济南: 齐鲁工业大学, 2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
闫车太. 三种除草剂在燕麦田土壤中的残留降解动态及对土壤微生物的影响[D]. 兰州: 甘肃农业大学, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
李立鑫, 高增贵, 杨瑞秀. 常用除草剂对玉米根际土壤微生物的影响[J]. 辽宁农业科学, 2015(2): 14-16. DOI: 10.3969/j.issn.1002-1728.2015.02.004 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
吴静, 陈岩岩, 叶项宇, 等. 除草剂草甘膦对板栗根际土壤微生物多样性的影响[J]. 经济林研究, 2019, 37(3): 161-167, 187. DOI: 10.14067/j.cnki.1003-8981.2019.03.023 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
曾全超. 黄土高原不同植被生态系统土壤微生物多样性及其影响因素研究[D]. 北京: 中国科学院大学, 2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |