
Regulation of shoot branching by BnaFZP in Brassica napus based on gene editing technology
Qian-qian LIU, Xiao-xiao SHEN, Huai-lin LI, Kai-di YU, Chu-chuan FAN
CHINESE JOURNAL OF OIL CROP SCIENCES ›› 2024, Vol. 46 ›› Issue (5) : 985-992.
Regulation of shoot branching by BnaFZP in Brassica napus based on gene editing technology
The FRIZZYPANICLE ( FZP) gene encodes the AP2/ERF transcription factor and is involved in plant architecture (shoot branching) regulation in the model plant Arabidopsis thaliana, which is an important target gene for the improvement of plant architecture in rapeseed. In the present study, we assessed the functions of rapeseed homologues of FZP gene in rapeseed at first time. According to the rapeseed bioinformatics analysis and gene cloning, we identified six copies of BnaFZP in Brassica napus genome. There is only an exon for all copies, which contains a conserved AP2-domain at N-terminal of their proteins. Gene expression analysis revealed that the BnaFZP expression levels were very low in different tissues, with a relative higher expression in roots, petals and siliques. A total of 48 targeted mutants with loss-of-function alleles at different copies of BnaFZP gene were obtained at T0 generation using the CRISPR/Cas9 system and Agrobacterium-mediated transformation. The induced mutations were stably transmitted to successive generations, and a variety of BnaFZP homozygous T-DNA-free mutants were obtained in the T1 generation. Phenotypic observation of the obtained mutants showed that the homozygous BnaA02g35090D / BnaC02g08170D double mutants and homozygous BnaC03g09100D / BnaA02g35090D / BnaC02g08170D triple mutants presented significant much shoot branching, which indicted that BnaFZP is involved in the regulation of plant architecture. Collectively, the mutants generated in this study would provide valuable resources for both basic studies and breeding programs.
Brassica napus L. / BnaFZP / AP2/ERF / CRISPR/Cas9 / plant architecture {{custom_keyword}} /
Table 1 Genotypic analysis of BnaFZP mutants and their transmission from T0 to T1 generations表1 T0到T1代 BnaFZP突变体基因型分析 |
植株编号 | 世代 | BnaA03g07180D | BnaC03g09100D | BnaA10g26790D | BnaC09g39250D | BnaA02g35090D | BnaC02g08170D | |
---|---|---|---|---|---|---|---|---|
Plant ID | Generation | S2 | S2 | S3 | S2 | S2 | S2 | S2 |
PSH48-5 | T0 | wt | Hetero | wt | wt | wt | Hetero | wt |
PSH 48-5-1 | T1 | wt | wt | wt | wt | wt | Homo | wt |
PSH 48-5-3 | T1 | Homo | Homo | wt | wt | Hetero | Hetero | Hetero |
PSH 48-5-6 | T1 | wt | Hetero | wt | wt | wt | Hetero | wt |
PSH 48-6 | T0 | Homo | Homo | Homo | Hetero | Hetero | Hetero | Hetero |
PSH 48-6-1 | T1 | Homo | Homo | Homo | Homo | Hetero | Homo | Homo |
PSH 48-6-5 | T1 | Homo | Homo | Hetero | Homo | wt | Hetero | Hetero |
PSH 48-6-10 | T1 | Homo | wt | wt | Hetero | wt | Hetero | Hetero |
PSH 48-7 | T0 | Hetero | Homo | wt | wt | Hetero | wt | Homo |
PSH 48-7-1 | T1 | wt | Homo | wt | wt | wt | wt | Homo |
PSH 48-7-2 | T1 | Hetero | Homo | wt | wt | Homo | wt | Homo |
PSH 48-7-6 | T1 | Homo | Homo | wt | Hetero | Homo | wt | Homo |
PSH 48-9 | T0 | wt | Hetero | wt | wt | wt | Hetero | Homo |
PSH 48-9-1 | T1 | wt | Hetero | wt | wt | wt | Hetero | Homo |
PSH 48-9-4 | T1 | wt | Homo | wt | wt | wt | Hetero | Homo |
PSH 48-9-11 | T1 | wt | Homo | wt | wt | wt | Homo | Homo |
PSH 48-11 | T0 | Homo | Homo | wt | Hetero | Hetero | Hetero | Homo |
PSH 48-11-1 | T1 | Homo | Homo | wt | Hetero | Homo | Hetero | Homo |
PSH 48-11-3 | T1 | Homo | Homo | wt | Homo | wt | wt | Homo |
PSH 48-11-7 | T1 | Homo | Homo | wt | Hetero | wt | Homo | Homo |
PSH 48-11-8 | T1 | Homo | Homo | wt | Homo | Hetero | Homo | Homo |
PSH 48-13 | T0 | Hetero | Hetero | wt | wt | wt | Hetero | Homo |
PSH 48-13-1 | T1 | wt | Homo | wt | wt | wt | Homo | Homo |
PSH48-57 | T0 | Hetero | Hetero | wt | wt | wt | Hetero | Hetero |
PSH48-57-2 | T1 | wt | Hetero | wt | wt | wt | Homo | Homo |
PSH48-57-3 | T1 | wt | Homo | wt | wt | wt | Homo | Hetero |
PSH48-57-7 | T1 | Homo | Hetero | wt | wt | wt | Homo | Hetero |
Fig. 2 Phylogenetic tree and the conserved domain of the BnaFZP gene图2 BnaFZP基因的进化树和蛋白质保守结构域分析 |
Fig. 3 Expression patterns of BnaFZP in Brassica napus L.图3 BnaFZP在甘蓝型油菜中的组织表达分析 |
Fig. 4 BnaFZP gene structure with target sequences and schematics of binary plasmid vector图4 BnaFZP基因结构、靶点序列和CRISPR/Cas9载体示意图 |
Fig. 5 The procedure of genetic transformation in rapeseed and transgenic detection of the regenerated seedlings图5 BnaFZP编辑载体转化油菜的流程与再生苗的转基因阳性鉴定 |
Fig. 6 Phenotypes of BnaFZP T1 generation mutants图6 BnaFZP突变体的T1代表型观察 |
1 |
刘成, 冯中朝, 肖唐华, 等. 我国油菜产业发展现状、潜力及对策[J]. 中国油料作物学报, 2019, 41( 4): 485- 489. DOI: 10.7505/j.issn.1007-9084.2019.04.001 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
丰泉. 油菜产量的构成因素及栽培技术[J]. 农村经济与科技, 1998, 9( 10): 26- 27.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
杨守仁, 张龙步, 王进民. 水稻理想株形育种的理论和方法初论[J]. 中国农业科学, 1984, 17( 3): 6- 13.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
牟同敏, 郑琦. 油菜产量构成因素的相关和通径分析[J]. 中国油料, 1984, 6( 3): 63- 67.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
胡虹文. 甘蓝型油菜12种主要性状与产量的关系[J]. 中国油料, 1997, 19( 3): 10- 11, 14.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
宋稀. 甘蓝型油菜一次分枝数的通径分析、遗传特性及QTL初步定位[D]. 北京: 中国农业科学院, 2012.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
悦曼芳, 张春, 吴忠义. 植物转录因子AP2/ERF家族蛋白结构和功能的研究进展[J]. 生物技术通报, 2022, 38( 12): 11- 26. DOI: 10.13560/j.cnki.biotech.bull.1985.2022-0432 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
杨阳. 油菜多室基因的鉴定及多室性状形成的分子调控机理解析[D]. 武汉: 华中农业大学, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |