
Effects of drought-rewatering on root development, photosynthetic physiology and yield formation of peanut during flowering-pegging stage
Shi-yu WANG, Reng-yuan LI, Xin AI, Xin-lei MA, Yang YU, Jing-na LEI, Xin-hua ZHAO, Jing WANG, Shu-li ZHAO, He ZHANG, Hai-qiu YU
CHINESE JOURNAL OF OIL CROP SCIENCES ›› 2024, Vol. 46 ›› Issue (6) : 1329-1338.
Effects of drought-rewatering on root development, photosynthetic physiology and yield formation of peanut during flowering-pegging stage
Root morphology, photosynthetic characteristics, and yield formation of peanut genotypes were investigated under drought-rewatering conditions during the flowering and sub needling stages to elucidate the physiological and ecological mechanisms by which drought stress affects high-yield peanut production. Drought-tolerant varieties NH9 and HY22, as well as drought-sensitive varieties NH16 and NH21, were used as test materials in potting experiments with controlled water supply. The results demonstrated that drought stress during the flowering-needling stage significantly impeded root dry matter accumulation in all four peanut varieties. The degree of inhibition increased with prolonged stress duration, resulting in decreases ranging from 11.22% to 21.01%, 11.83% to 14.68%, 38.78% to 44.40%, and 31.94% to 40.16% for NH9, HY22, NH16, and NH21 respectively. Under drought stress, the photosynthetic gas exchange parameters and chlorophyll fluorescence parameters of the four peanut varieties were significantly reduced. However, there was an increase in chlorophyll content, and NH9 and HY22 exhibited relatively higher values of Gs and Ci compared to NH16 and NH21. The impact on chlorophyll fluorescence parameter values (Fv/Fm, ΦPSII, Rfd, qP) was less pronounced, while the increase in NPQ and chlorophyll content did not reach a significant level. Drought stress during flowering and needle-down stages had a substantial effect on peanut yield. The yield per plant decreased by 3.67%-13.04%, 4.32%-13.04%, 18.19%-36.61%, and 14.53%-39.25% for NH9, HY22, NH16, and NH21, respectively. The reduction in yield for drought-tolerant varieties was primarily attributed to a decrease in the number of full fruits per plant; whereas for drought-sensitive varieties it was also due to a decrease in the number of full fruits per plant with additional influence from other factors such as pod formation. After re-watering, the root growth, dry matter accumulation, and photosynthetic characteristics of NH9 and HY22 were rapidly restored to normal levels, even exhibiting super-compensatory effects. Meanwhile, the inhibitory effect on NH16 and NH21 was alleviated but still differed from the control group, particularly in terms of indicators such as root dry weight, root surface area, Pn (photosynthetic rate), and Rfd (quantum yield of PSII). Overall, variations in peanut genotype yield reduction primarily resulted from differences in the number of full fruits per plant. In conclusion, the distinct response patterns to drought stress among different peanut genotypes can be attributed to the superior drought resistance of NH9 and HY22 due to their well-developed root morphology and adapted photosynthetic capacity.
peanuts / drought stress / flowering and sub needling stage / root development / photosynthetic characteristics / yield {{custom_keyword}} /
Fig. 1 Effects of drought-rewatering on dry matter accumulation in organs of peanut plant图1 干旱-复水对花生植株各器官干物质积累量的影响 |
Table 1 Effects of drought-rewatering on chlorophyll content in peanut leaves表1 干旱-复水对花生叶片叶绿素含量的影响 |
参数 Parameter | 品种 Cultivar | 天数 Treat days | ||||
---|---|---|---|---|---|---|
D7 | D14 | D21 | R7 | |||
叶绿素a /(mg/g) Chlorophyll a | NH9 | CK | 1.77±0.01 | 1.78±0.04 | 2.13±0.1 | 1.76±0.04 |
MD | 1.73±0.05 | 1.8±0.04 | 2.2±0.06 | 1.77±0.04 | ||
HY22 | CK | 1.63±0.02 | 1.58±0.05 | 2.09±0.07 | 2.04±0.05 | |
MD | 1.61±0.06 | 1.67±0.01 | 2.12±0.08 | 1.99±0.03 | ||
NH16 | CK | 1.59±0.04 | 1.56±0.03 | 1.79±0.07 | 1.83±0.02 | |
MD | 1.66±0.06 | 1.76±0.05* | 2.26±0.08** | 1.81±0.07 | ||
NH21 | CK | 1.63±0.06 | 1.79±0.05 | 2.15±0.04 | 1.85±0.06 | |
MD | 1.91±0.06** | 2.68±0.07** | 2.56±0.05** | 2.06±0.07 | ||
叶绿素b /(mg/g) Chlorophyll b | NH9 | CK | 0.65±0.04 | 0.68±0.04 | 0.79±0 | 0.61±0.02 |
MD | 0.63±0.03 | 0.71±0.02 | 0.77±0.01 | 0.63±0.02 | ||
HY22 | CK | 0.54±0.03 | 0.53±0.02 | 0.86±0.03 | 0.64±0.02 | |
MD | 0.56±0.03 | 0.57±0.03 | 0.84±0.01 | 0.65±0.03 | ||
NH16 | CK | 0.55±0.04 | 0.54±0 | 0.62±0.03 | 0.57±0.01 | |
MD | 0.59±0.03 | 0.64±0.02** | 0.87±0.03** | 0.62±0.04 | ||
NH21 | CK | 0.54±0.02 | 0.59±0.03 | 0.78±0.03 | 0.6±0.03 | |
MD | 0.75±0.04** | 0.96±0.03** | 0.88±0.04* | 0.66±0.03 | ||
总叶绿素含量 /(mg/g) Total chlorophyll content | NH9 | CK | 2.33±0.09 | 2.5±0.17 | 2.7±0.14 | 2.37±0.06 |
MD | 2.28±0.13 | 2.43±0.06 | 2.87±0.03 | 2.32±0.09 | ||
HY22 | CK | 2.14±0.01 | 2.19±0.05 | 2.92±0.13 | 2.69±0.07 | |
MD | 2.12±0.02 | 2.21±0.1 | 3.01±0 | 2.64±0.03 | ||
NH16 | CK | 2.13±0.05 | 2.11±0.08 | 2.41±0.1 | 2.4±0.03 | |
MD | 2.37±0.12 | 2.44±0.08* | 3.13±0.1* | 2.46±0.08 | ||
NH21 | CK | 2.15±0.11 | 2.38±0.08 | 2.94±0.09 | 2.45±0.07 | |
MD | 2.65±0.08* | 3.64±0.09** | 3.4±0.1** | 2.73±0.1* |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
姜慧芳, 任小平. 干旱胁迫对花生叶片SOD活性和蛋白质的影响[J]. 作物学报, 2004, 30(2): 169-174. DOI: 10.3321/j.issn: 0496-3490.2004.02.015 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
段骅, 佟卉, 刘燕清, 等. 高温和干旱对水稻的影响及其机制的研究进展[J]. 中国水稻科学, 2019, 33(3): 206-218. DOI: 10.16819/j.1001-7216.2019.8106 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
张智猛, 万书波, 戴良香, 等. 不同花生品种对干旱胁迫的响应[J]. 中国生态农业学报, 2011, 19(3): 631-638. DOI: 10.3724/SP.J.1011.2011.00631 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
任婧瑶, 王婧, 艾鑫, 等. 干旱胁迫下花生苗期耐旱生理应答特性分析[J]. 中国油料作物学报, 2022, 44(1): 138-146. DOI: 10.19802/j.issn.1007-9084.2020300 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
张俊, 刘娟, 臧秀旺, 等. 不同生育时期水分胁迫对花生生长发育和产量的影响[J]. 中国农学通报, 2015, 31(24): 93-98.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
任婧瑶, 王婧, 蒋春姬, 等. 花生种质苗期耐旱性鉴定与综合评价[J]. 沈阳农业大学学报, 2019, 50(6): 722-727. DOI: 10.3969/j.issn.1000-1700.2019.06.010 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
刘娜. 钾素对花生生育特性及产量品质的影响[D]. 沈阳: 沈阳农业大学, 2020.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
魏清江, 冯芳芳, 马张正, 等. 干旱复水对柑橘幼苗叶片光合、叶绿素荧光和根系构型的影响[J]. 应用生态学报, 2018, 29(8): 2485-2492. DOI: 10.13287/j.1001-9332.201808.028 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
李俊庆. 不同生育时期干旱处理对夏花生生长发育的影响[J]. 花生学报, 2004, 33(4): 33-35. DOI: 10.3969/j.issn.1002-4093.2004.04.008 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
杨喜珍, 杨利, 覃亚, 等. PEG-8000模拟干旱胁迫对马铃薯组培苗叶绿素和类胡萝卜素含量的影响[J]. 中国马铃薯, 2019, 33(4): 193-202.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
刘海东, 陈庆政, 林秀芳, 等. 干旱胁迫对花生生理特性与产质量的影响[J]. 贵州农业科学, 2022, 50(12): 25-34. DOI: 10.3969/j.issn.1001-3601.2022.12.005 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
顾学花, 孙莲强, 高波, 等. 施钙对干旱胁迫下花生生理特性、产量和品质的影响[J]. 应用生态学报, 2015, 26(5): 1433-1439. DOI: 10.13287/j.1001-9332.20150319.015 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |