
QTL mapping and related gene mining of drought tolerance at germination stage in soybean
Jian-guo XIE, Ming-liang WANG, Yun-feng ZHANG, Fan-fan MENG, Yu-hong ZHENG, Guang LI, Xing-miao SUN, Xu-hong FAN, Zhen-yu YANG, Shu-ming WANG, Hong-wei JIANG
CHINESE JOURNAL OF OIL CROP SCIENCES ›› 2025, Vol. 47 ›› Issue (2) : 328-337.
QTL mapping and related gene mining of drought tolerance at germination stage in soybean
In recent years, drought weather has occurred frequently during spring sowing in Northeast China, resulting in poor germination quality and low emergence rate of soybean seeds. In this study, 20% polyethylene glycol (PEG-6000) was used to simulate drought stress to identify drought tolerance of 201 chromosome segment substitution line populations at germination stage. Germination potential, germination rate, germination index, relative germination potential, relative germination rate, relative germination index and drought damage rate were used as identification indexes. Cluster analysis obtained 19 drought tolerant materials, 131 intermediate materials, and 51 sensitive materials. Inclusive composite interval mapping (ICIM) method was used to locate QTLs for each germination index, and a total of 3 QTLs were located, of which qDT-4-1 and qDT-15-2 were located in multiple traits. A total of 17 genes were annotated in qDT-4-1 and qDT-15-2. Based on amino acid sequence alignment and real-time fluorescence quantitative analysis between parents, it was speculated that gene Glyma.15G196400 might be related to drought tolerance at germination stage. Haplotype analysis of candidate gene Glyma.15G196400 was performed using 258 soybean germplasm resources, and 2 elite haplotypes Hap-1 and Hap-2 were obtained. These 2 haplotypes had a G-A mutation at -2001 bp, which caused a mutation of CAAT-box promoter. The germination rate, germination potential and germination index of Hap-1 and Hap-2 were significantly different at 0.05 level, indicating that the candidate gene had a wide range of applicability in the soybean population.
drought tolerance at soybean germination stage / resource identification / QTL mapping / candidate genes / haplotype {{custom_keyword}} /
Table 1 Real-time quantitative PCR primer表1 实时定量PCR引物 |
基因 Gene | 上游引物 Upper primer sequence | 下游引物 Lower primer sequence |
---|---|---|
Glyma.04G100500 | 5’CTCATGCAGTTTGTATTCCGTACC3’ | 5’GGGATCTGAAAACCCTTGAAATGG3’ |
Glyma.15G196400 | 5’GAAGTAGAGGGAAGCTGAAAGACA3’ | 5’TGATACCCTCTCCAAGAATGTGTG3’ |
Glyma.15G196500 | 5’GAAGTAGAGGGAAGCTGAAAGACA3’ | 5’CACTGTACTGAGCCAGTATCTTGT3’ |
Glyma.15G196600 | 5’CTAATCATTTGGGATGAAGCACCC3’ | 5’TTCCAGAAATCTCCACCTAACACC3’ |
Glyma.15G197000 | 5’TCCCTGATACTTCACTTGTCGTTC3’ | 5’TACGAAGAACTTACAGTGCTCGAG3’ |
GmACTIN11 | 5’ATCTTGACTGAGCGTGGTTATTCC3’ | 5’GCTGGTCCTGGCTGTCTCC3’ |
Table 2 Phenotype of drought tolerance at bud stage in CSSL population表2 CSSL群体芽期耐旱表型统计 |
性状 Traits | 最小值 Min | 最大值 Max | 平均值 Mean | 标准差 SD | 偏度 Skewness | 峰度 Kurtosis |
---|---|---|---|---|---|---|
发芽率 GR /% | 2.50 | 100.00 | 60.29 | 26.55 | 0.46 | 0.85 |
发芽势 GE /% | 0.00 | 87.50 | 17.88 | 20.64 | 1.42 | 1.23 |
发芽指数 GI | 0.13 | 20.00 | 7.72 | 4.95 | 0.58 | 0.51 |
相对发芽率 RGR /% | 2.56 | 98.70 | 70.16 | 39.80 | 5.24 | 54.83 |
相对发芽势 RGE /% | 0.00 | 90.74 | 23.64 | 30.72 | 4.52 | 36.26 |
相对发芽指数 RGI | 0.02 | 1.65 | 0.35 | 0.22 | 2.02 | 9.71 |
Table 3 ICIM method for mapping QTL of drought tolerance at the bud stage in CSSL population表3 CSSL群体ICIM法定位芽期耐旱QTL |
位点 QTL | 性状 Trait | LOD值 | 表型贡献率 PVE /% | 加性效应 Add | 起始位置 /bp Starting position | 终止位置 /bp End position |
---|---|---|---|---|---|---|
qGR-15-1 | 发芽率 GR /% | 3.07 | 5.23 | 16.57 | 3 578 943 | 3 759 478 |
qGR-15-2 | 发芽率 GR /% | 3.90 | 6.93 | 11.08 | 22 513 604 | 22 883 870 |
发芽势 GE /% | 2.68 | 6.66 | 8.13 | |||
发芽指数 GI /% | 3.38 | 8.38 | 2.09 | |||
qGE-4-1 | 发芽势 GE /% | 2.63 | 6.39 | -9.64 | 9 153 268 | 9 243 003 |
发芽指数 GI | 2.62 | 6.28 | -2.19 |
Table 4 Candidate gene functional annotation表4 候选基因功能注释 |
基因 Gene | GO注释号 GO number | 功能 Function |
---|---|---|
Glyma.04G100000 | GO:0016788 | Plant transposon protein |
Glyma.04G100100 | Ubiquitin carboxyl-terminal hydrolase | |
Glyma.04G100200 | EXORDIUM like 2 | |
Glyma.04G100300 | Phosphate-responsive 1 family protein | |
Glyma.04G100400 | Phosphate-responsive 1 family protein | |
Glyma.04G100500 | GO:0016758,GO:0008152 | UDP-Glycosyltransferase superfamily protein |
Glyma.15G196100 | Pectin lyase-like superfamily protein | |
Glyma.15G196200 | GO:0005975,GO:0004650 | Pectin lyase-like superfamily protein |
Glyma.15G196300 | Mads box protein | |
Glyma.15G196400 | protein-serine/threonine phosphatase | |
Glyma.15G196500 | GO:0007165,GO:0000155,GO:0005515,GO:0006355,GO:0018298,GO:0009584 | Signaling proteins |
Glyma.15G196600 | GO:0006281,GO:0003678,GO:0000723 | PIF1 helicase |
Glyma.15G196700 | ||
Glyma.15G196800 | GO:0003676 | RNA bindind protrin |
Glyma.15G196900 | Carbohydrate-binding X8 domain superfamily protein | |
Glyma.15G197000 | Pentatricopeptide repeat (PPR) superfamily protein | |
Glyma.15G197100 | Chaperone DnaJ-domain superfamily protein |
Fig. 2 Amino acid variation of 5 candidate genes between parents图2 5个候选基因在双亲间的氨基酸变异 |
Fig. 3 Phenotype of extremely sensitive or tolerant materials图3 极端材料的耐旱表型 |
Fig. 6 SNP site variation between Glyma.15G196400 elite haplotypes of Hap-1 and Hap-2图6 Glyma.15G196400优异单倍型间Hap-1和Hap-2的SNP位点变异 |
1 |
林汉明, 常汝镇, 邵桂花, 等. 中国大豆耐逆研究[M]. 北京: 中国农业出版社, 2009: 1-60..
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
邓凤飞, 杨双龙, 龚明. 细胞信号分子对非生物胁迫下植物脯氨酸代谢的调控[J]. 植物生理学报, 2015, 51(10): 1573-1582. DOI: 10.13592/j.cnki.ppj.2015.1015 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
周亚丽. 高温高湿下大豆GmLEA、GmFAD2: 1B与GmPM27基因在种子活力形成中的功能分析[D]. 南京: 南京农业大学, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
解文娟, 杨晓光, 杨婕, 等. 气候变化背景下东北三省大豆干旱时空特征[J]. 生态学报, 2014, 34(21): 6232-6243. DOI: 10.5846/stxb201302020219 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
王利彬, 刘丽君, 裴宇峰, 等. 大豆种质资源芽期抗旱性鉴定[J]. 东北农业大学学报, 2012, 43(1): 36-43. DOI: 10.19720/j.cnki.issn.1005-9369.2012.01.007 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
肖佳雷, 李炜, 来永才, 等. 黑龙江省春大豆种质资源芽期抗旱鉴定与筛选[J]. 作物杂志, 2012(1): 142-145. DOI: 10.16035/j.issn.1001-7283.2012.01.037 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
张海平, 张俊峰, 陈妍, 等. 大豆种质资源萌发期耐旱性评价[J]. 植物遗传资源学报, 2021, 22(1): 130-138. DOI: 10.13430/j.cnki.jpgr.20200330001 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
毕红园, 赵智勇, 曹梦琳, 等. 11个小麦品种对干旱胁迫的响应及抗旱性评价[J]. 江苏农业科学, 2023, 51(20): 85-92. DOI: 10.15889/j.issn.1002-1302.2023.20.012 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
吴建忠. 玉米抗旱性研究进展[J]. 山西农业大学学报: 自然科学版, 2023, 43(6): 18-25. DOI: 10.13842/j.cnki.issn1671-8151.202306020 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
于华荣, 郭园, 曹帅, 等. 7个大豆品种在科尔沁地区的抗旱性综合评价[J]. 种子, 2021, 40(12): 68-74. DOI: 10.16590/j.cnki.1001-4705.2021.12.068 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
王昕奕. 大豆GmANKTM21基因调控抗旱和开花功能研究[D]. 哈尔滨: 东北农业大学, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
赵萌, 杨帅, 蒋洪蔚, 等. 大豆种质资源芽期耐旱鉴定及综合评价[J]. 大豆科学, 2023, 42(6): 701-709. DOI: 10.11861/j.issn.1000-9841.2023.06.0701 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
郑莉萍, 张云峰, 蒋洪蔚, 等. 大豆种质资源芽期耐低温综合评价及筛选[J]. 大豆科学, 2020, 39(6): 833-847. DOI: 10.11861/j.issn.1000-9841.2020.06.0833 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
赵兴震. 大豆耐旱性评价及耐旱相关基因挖掘[D]. 北京: 中国农业科学院, 2020.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
陈庆山, 蒋洪蔚, 辛大伟, 等. 作物回交导入系的构建与应用[J]. 中国油料作物学报, 2020, 42(1): 1-7. DOI: 10.19802/j.issn.1007-9084.2020027 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
蒋洪蔚, 李灿东, 李瑞超, 等. 野生大豆ZYD00006回交导入系构建[J]. 中国油料作物学报, 2020, 42(1): 8-16. DOI: 10.19802/j.issn.1007-9084.2020014 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
何亮, 李富华, 沙莉娜, 等. 玉米2C型丝氨酸/苏氨酸蛋白磷酸酶(PP2C)活性与耐旱性的关系[J]. 作物学报, 2008, 34(5): 899-903. DOI: 10.3321/j.issn: 0496-3490.2008.05.025 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
于欢, 陈伊洁, 刘康林, 等. 单倍型分析软件HaploAssistant包的开发与应用[J/OL]. 分子植物育种: 1-11[2024-04-25].
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
范晶, 胡霞, 童超, 等. 水稻叶绿体matK基因单倍型的遗传分化与进化特征[J/OL]. 分子植物育种: 1-14[2024-04-25].
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
陈宏伟. 水稻气孔相关性状全基因组关联分析[D]. 沈阳农业大学, 2019. DOI:10.27327/d.cnki.gshnu.2019.000037 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |