
Assessment of greenhouse gas emissions and carbon footprint associated with annual cultivation of winter wheat-summer corn||summer peanut in farmland
Wen-qi JIA, Miao YI, Jia-lei ZHANG, Sha YANG, Jing-jing MENG, Zheng ZHANG, Feng GUO, Jian-guo WANG, Shu-bo WAN
CHINESE JOURNAL OF OIL CROP SCIENCES ›› 2024, Vol. 46 ›› Issue (3) : 664-675.
Assessment of greenhouse gas emissions and carbon footprint associated with annual cultivation of winter wheat-summer corn||summer peanut in farmland
To explore the impact of annual planting patterns of winter wheat summer corn and summer peanut on greenhouse gas emissions and carbon footprint in farmland, 3 crop rotation planting methods were set up: winter wheat summer corn, winter wheat summer peanut, and winter wheat summer corn and summer peanut. Among them, the intercropping of summer corn and summer peanut was 3∶4 (intercropped corn peanut row ratio of 3∶4), 3∶6 (intercropped corn peanut row ratio of 3∶6), and 6∶8 (intercropped corn peanut row ratio of 6∶8), the annual greenhouse gas emissions and carbon footprint characteristics of farmland were studied through field experiments. Results showed that the intercropping mode of summer corn and summer peanut could reduce greenhouse gas emissions in farmland, compared with corn monoculture, the average emission fluxes of soil CO2 and N2O decreased by 10.24%-18.75% and 10.78%-23.93%, respectively, and the total emission decreased by 8.30%-19.12% and 14.09%-26.81%, respectively. Intercropping reduced greenhouse gas emissions from subsequent winter wheat crops (under rotation mode), resulting in 3.79% decrease in soil CO2 emissions and 3.84% decrease in total emissions compared to corn monoculture treatment. Soil N2O emission flux decreased by 16.80% and the total emission decreased by 17.66%; the total amount of CH4 emissions from soil showed a "sink" phenomenon. In addition, the main source of carbon footprint in monoculture corn production was nitrogen fertilizer, accounting for 49.13% of the total emissions; the main sources of carbon footprint in monoculture peanut production were nitrogen fertilizer and plastic film, accounting for 23.77% and 26.06% of total emissions, respectively; the main sources of carbon footprint under intercropping mode were nitrogen fertilizer, diesel, and plastic film, accounting for 31.50%, 16.74%, and 17.92% of the total emissions, respectively. The intercropping mode increased the carbon emission efficiency of subsequent wheat crops, reduced the global warming potential, and greenhouse gas emission intensity. In summary, the annual planting model of winter wheat summer corn and summer peanut (intercropped corn peanut row ratio of 3∶6) could reduce carbon emissions from farmland and carbon footprint in crop production, and was beneficial for ecology.
corn peanut intercropping / greenhouse gas emissions from farmland / carbon footprint / global warming potential (GWP) {{custom_keyword}} /
Table 1 Experimental design表1 试验设计 |
处理 Treatment | 密度 /(万株·hm-2) Density /(×104·hm-2) | 备注 Note |
---|---|---|
玉米单作茬口冬小麦-夏玉米 MW-SM | 6 | |
花生单作茬口冬小麦-夏花生 PW-SP | 22.5 | |
间作茬口冬小麦-夏玉米||夏花生 IW1-IMP1 | M(6.3)‖P(11.7) | 玉米花生行比3∶4 The ratio of corn to peanuts in rows is 3∶4 |
间作茬口冬小麦-夏玉米||夏花生 IW2-IMP2 | M(5.1)‖P(14.3) | 玉米花生行比3∶6 Ratio of corn to peanuts in rows is 3∶6 |
间作茬口冬小麦-夏玉米||夏花生 IW3-IMP3 | M(4.8)‖P(11.7) | 玉米花生行比6∶8 Ratio of corn to peanuts in rows is 6∶8 |
Fig. 1 Soil CO2 emission flux at different stubble in winter wheat season图1 冬小麦季不同茬口土壤CO2排放通量 |
Table 2 Carbon emission per unit area of different crops and planting patterns /(kg·hm-2,CO2-eq)表2 不同作物及种植模式单位面积碳排放 |
项目 Item | 不同作物及种植模式Different crops and planting patterns | |||||
---|---|---|---|---|---|---|
W | SM | SP | IMP1 | IMP2 | IMP3 | |
种子 Seed | 60.93 | 127.05 | 212.02 | 172.03 | 178.6 | 174.31 |
氮肥 N | 1992.00 | 1867.50 | 1037.50 | 1139.10 | 1088.90 | 1252.50 |
磷肥 P2O5 | 97.60 | 91.50 | 76.25 | 82.96 | 81.74 | 83.88 |
钾肥 K2O | 70.40 | 66.00 | 55.00 | 59.84 | 58.96 | 60.50 |
除草剂 Herbicides | 6.60 | 62.02 | 54.30 | 55.42 | 58.97 | 52.68 |
杀虫剂 Insecticides | 33.55 | 55.64 | 70.09 | 56.64 | 57.14 | 51.65 |
杀菌剂 Fungicides | 32.87 | 15.33 | 38.69 | 27.69 | 31.28 | 25.58 |
地膜 Mulching film | 1139 | 652 | 729 | 785 | ||
农田氮肥投入排放Agricultural N input emissions | 685.57 | 642.72 | 357.07 | 448.48 | 465.62 | 499.90 |
柴油 Diesel | 698.62 | 357.62 | 810.22 | 760.18 | 770.75 | 782.38 |
电力 Electricity | 660.49 | 515.49 | 515.49 | 515.49 | 515.49 | 515.49 |
总排放 Total | 4338.63 | 3800.87 | 4365.63 | 3969.83 | 4036.45 | 4283.87 |
Table 3 Effects of different stubble on CEE, GWP and GHGI of winter wheat表3 不同茬口对冬小麦碳排放效率、全球增温潜势、温室气体排放强度的影响 |
处理 Treatment | CEE /(kg/kg) | GWP /(kg/hm2) | GHGI /(kg/kg) |
---|---|---|---|
MW | 1.56b | 6 176.06a | 0.64a |
IW | 1.68a | 5 884.97b | 0.59a |
PW | 1.92a | 5 254.91c | 0.59a |
Table 4 Effects of maize and peanut intercropping on CEE, GWP and GHGI表4 夏玉米||夏花生对碳排放效率、全球增温潜势、温室气体排放强度的影响 |
年份 Year | 处理 Treatments | CEE /(kg/kg) | GWP /(kg/hm2) | GHGI /(kg/kg) |
---|---|---|---|---|
2018 | SM | 1.34a | 8987.79ab | 0.894b |
IMP1 | 1.04b | 9273.66a | 1.142b | |
IMP2 | 1.20a | 7898.32bc | 0.961b | |
IMP3 | 1.26a | 7215.80c | 0.931b | |
SP | 0.49c | 7236.71c | 2.449a | |
2019 | SM | 1.44b | 10 309.26a | 0.93b |
IMP1 | 1.50ab | 7 866.85b | 0.87bc | |
IMP2 | 1.67a | 8 165.14b | 0.75c | |
IMP3 | 1.37b | 7 907.48b | 0.95b | |
SP | 0.65c | 6 005.50c | 1.87a |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
张黛静, 宗洁静, 马建辉, 等. 小麦-玉米周年耕作方式与增施有机肥对夏玉米土壤有机碳库及温室气体排放的影响[J]. 生态环境学报, 2019, 28(10): 1927-1935. DOI: 10.16258/j.cnki.1674-5906.2019.10.001 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
何京, 董建新, 丛萍, 等. 玉米秸秆碳形态对植烟土壤有机碳及土壤综合肥力的快速提升效应[J]. 华北农学报, 2022, 37(2): 132-141. DOI: 10.7668/hbnxb.20192561 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
黄坚雄, 隋鹏, 高旺盛, 等. 华北平原玉米‖大豆间作农田温室气体排放及系统净温室效应评价[J]. 中国农业大学学报, 2015, 20(4): 66-74. DOI: 10.11841/j.issn.1007-4333.2015.04.09 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
马怀英, 王上, 杨亚东, 等. 燕麦与豆科作物间作的产量、经济效益与碳足迹分析[J]. 中国农业大学学报, 2021, 26(8): 23-32. DOI: 10.11841/j.issn.1007-4333.2021.08.03 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
姜雨林, 陈中督, 遆晋松, 等. 华北平原不同轮作模式固碳减排模拟研究[J]. 中国农业大学学报, 2018, 23(1): 19-26. DOI: 10.11841/j.issn.1007-4333.2018.01.03 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
唐朝辉, 张佳蕾, 郭峰, 等. 小麦-玉米//花生带状轮作理论与技术[J]. 山东农业科学, 2018, 50(6): 111-115, 2. DOI: 10.14083/j.issn.1001-4942.2018.06.019 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
聂会东, 屈忠义, 杨威, 等. 秸秆生物炭对河套灌区膜下滴灌玉米农田生态系统碳足迹的影响[J]. 环境科学, 2023, 44(10): 5832-5841. DOI: 10.13227/j.hjkx.202209167 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
李波, 张俊飚, 李海鹏. 中国农业碳排放时空特征及影响因素分解[J]. 中国人口·资源与环境, 2011, 21(8): 80-86. DOI: 10.3969/j.issn.1002-2104.2011.08.013 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
马翠梅, 徐华清, 苏明山. 美国加州温室气体清单编制经验及其启示[J]. 气候变化研究进展, 2013, 9(1): 55-60. DOI: 10.3969/j.issn.1673-1719.2013.01.009 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
潘占东. 添加生物质炭对黄土高原旱作农田土壤温室气体排放及土壤理化性质的影响[D]. 兰州: 甘肃农业大学, 2021.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
杨学慧, 于爱忠, 柴健, 等. 绿肥还田结合减氮对麦田土壤呼吸及其温度敏感性的影响[J]. 中国生态农业学报: 中英文, 2024, 32(1): 61-70. DOI: 10.12357/cjea.20230313 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
Ipcc. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[J], 2021.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
陈津赛, 王广帅, 张莹莹, 等. 玉米大豆间作对农田土壤N2O排放的影响[J]. 灌溉排水学报, 2020, 39(9): 32-40. DOI: 10.13522/j.cnki.ggps.2019299 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
孙晓楠. 大豆—玉米垄作间作对间作系统生理生态及后茬小麦赤霉病的影响[D]. 合肥: 安徽农业大学, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
王艳群. 华北小麦/玉米轮作体系氮素调控综合效应研究[D]. 保定: 河北农业大学, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
刘鑫钰, 王弋, 贺斌, 等. 基于水、碳足迹的绿洲小麦生产环境影响特征及其脱钩关系: 以新疆叶尔羌河流域莎车灌区为例[J]. 地球科学与环境学报, 2023, 45(4): 869-880. DOI: 10.19814/j.jese.2022.12072 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
孙博, 秦裕波, 林园, 等. 吉林省半干旱区玉米生命周期碳足迹研究[J]. 玉米科学, 2023, 31(4): 66-73. DOI: 10.13597/j.cnki.maize.science.20230409 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
邹晓霞, 张巧, 张晓军, 等. 玉米花生宽幅间作碳足迹初探[J]. 花生学报, 2017, 46(2): 11-17. DOI: 10.14001/j.issn.1002-4093.2017.02.002 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
滕园园. 免耕密植玉米间作豌豆农田生态系统碳平衡特征研究[D]. 兰州: 甘肃农业大学, 2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
殷民兴, 赵财, 葛丽丽, 等. 间作及减量灌溉对农田土壤温室气体排放的互作效应[J]. 干旱地区农业研究, 2024, 42(1): 214-225. DOI: 10.7606/j.issn.1000-7601.2024.01.22 .
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
赵彦华. 增密对玉米/豌豆生产力形成、温室气体排放生态学过程的影响[D]. 兰州: 甘肃农业大学, 2020.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
33 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
34 |
牛东, 潘慧, 丛美娟, 等. 氮肥运筹和秸秆还田对麦季土壤温室气体排放的影响[J]. 麦类作物学报, 2016, 36(12): 1667-1673.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
35 |
李志康. 秸秆长期还田与水氮管理对稻麦产量和农田温室气体排放的影响[D]. 扬州: 扬州大学, 2023.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |