[1] Ramsey J, Schemske D W. Pathways, mechanisms, and rates of polyploid formation in flowering plants[J]. Annu Rev Ecol Evol Syst, 1998, 29: 467–501.
[2] Levin D A. The cytoplasmic factor in plant speciation[J]. Syst Bot, 2003, 28: 5-11.
[3] Otto S P. 2007. The evolutionary consequences of polyploidy[J]. Cell 131: 452–462.
[4] Doyle J J, Flagel L E, Paterson A H, et al. Evolutionary genetics of genome merger and doubling in plants[J]. Annu Rev Genet, 2008, 42: 443-461.
[5] Soltis P S, Soltis D E. Polyploidy and genome evolution[M]. Springer, Berlin.2012
[6] Feldman M, Levy A A. Genome evolution due to allopolyploidization in wheat[J]. Genetics, 2012, 192: 763–774.
[7] Crawford D J, Doyle J J, Soltis D E, et al. Contemporary and future studies in plant speciation, morphological/floral evolution and polyploidy: honouring the scientific contributions of Leslie D. Gottlieb to plant evolutionary biology.[J]. Philos Trans R Soc Lond B Biol Sci, 2014, 369(1648):20130341.
[8] Buggs R J, Wendel J F, Doyle J J, et al. The legacy of diploid progenitors in allopolyploid gene expression patterns[J]. Philos Trans R Soc Lond B Biol Sci, 2014, 369(1 648): 20130354.
[9] Brenchley R, Spannagl M, Pfeifer M, et al. Analysis of the bread wheat genome using whole-genome shotgun sequencing[J]. Nature, 2012, 491: 705–710.
[10] Paterson A H, Wendel J F, Gundlach H, et al. Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres[J]. Nature, 2012, 492: 423-427.
[11] Chalhoub B, Denoeud F, Liu S, et al. Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome[J]. Science, 2014, 345: 950–953.
[12] Li A, Liu DC, Wu J, et al. mRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploidy wheat[J]. Plant Cell, 2014, 26: 1 878-1 900.
[13] Zhang T, Hu Y, Jiang W, et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement[J]. Nat Biotechnol, 2015, 33: 531–537.
[14] Griffiths S, Sharp R, Foote T N, et al. Molecular characterization of Ph1 as a major chromosome pairing locus in polyploid wheat[J]. Nature, 2006, 439: 749–752.
[15] International Wheat Genome Sequencing Consortium (IWGSC). A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome[J]. Science, 2014, 345: 1251788.
[16] Wang X, Wang H, Wang J, et al. The genome of the mesopolyploid crop species Brassica rapa[J]. Nat Genet, 2011, 43: 1 035–1 039.
[17] Liu S, Liu Y, Yang X, et al. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes[J]. Nat Commun, 2014, 5: 3 930.
[18] Yang J H, Liu D Y, Wang X W, et al. The genome sequence of allopolyploid Brassica juncea and analysis of differential homoeolog gene expression influencing selection[J]. Nat Genet, 2016, 48: 1 225-1 232.
[19] Pelé A, Trotoux G, Eber F, et al. The poor lonesome A subgenome of Brassica napus var. Darmor (AACC) may not survive without its mate[J]. New Phytol, 2016, 213(4): 1 886–1 897.
[20] Kerber E R. Wheat: reconstitution of the tetraploid component (AABB) of hexaploids[J]. Science, 1964, 143: 253–255.
[21] Zhang H K, Zhu B, Qi B, et al. Evolution of the BBAA component of bread wheat during its history at the allohexaploid level[J]. Plant Cell, 2014, 26: 2 761–2 776.
[22] Tu Y Q, Sun J, Ge X H, et al. Production and genetic analysis of partial hybrids from intertribal sexual crosses between Brassica napus and Isatis indigotica and progenies[J]. Genome, 2010, 53: 146–156.
[23] Zhu B, Tu Y Q, Zeng P, et al. Extraction of the constituent subgenomes of the natural allopolyploid rapeseed (Brassica napus L.) [J]. Genetics, 2016, 204: 1 015–1 027.
[24] Li Z Y, Ge X G. Unique chromosome behavior and genetic control in Brassica × Orychophragmus wide hybrids: a review[J]. Plant Cell Rep, 2007, 26:701-710.
[25] Ge X H, Ding L, Li Z Y. Nucleolar dominance and different genome behaviors in hybrids and allopolyploids[J]. Plant Cell Rep, 2013, 32: 1 661–1 673.
[26] Ge X H, Wang J, Li Z Y. Different genome-specific chromosome stabilities in synthetic Brassica allohexaploids revealed by wide crosses with Orychophragms[J]. Ann Bot, 2009, 104: 19-31.
[27] Zhou J N, Chen T, Cui C, et al. Distinct subgenome stabilities in synthesized Brassica allohexaploids[J]. Theor Appl Genet, 2016, 129: 1 257-1 271.
[28] Gupta M, Gupta S, Kumar H, et al. Population structure and breeding value of a new type of Brassica juncea created by combining A and B genomes from related allotetraploids[J]. Theor Appl Genet, 2015, 128: 221-234.
[29] 朱 斌,蔡梦鲜,翁庆北,等. 重组型白菜的细胞学及分子遗传解析[J].贵州师范大学学报,2017,35(5):30-35.
[30] Guo Y M, Chen S, Li Z Y, et al. Center of origin and centers of diversity in an ancient crop, Brassica rapa (turnip rape) [J]. J Heredity, 2014, 105: 555–565.
[31] Cui C, Ge X H, Gautam M, et al. Cytoplasmic and genomic effects on meiotic pairing in Brassica hybrids and allotetraploids from pair crosses of three cultivated diploids[J]. Genetics, 2012, 191: 725-738.
[32] Simmonds N W. Principles of crop improvement[M]. Longman Group, New York.1979.
[33] Gómez-Campo C, Prakash S. Origin and domestication[A]. In: C. Gómez-Campo (ed.), Biology of Brassica Coenospecies[M]. Elsevier Science, Amsterdam.1999. 59–106.
[34] Mizushima U, Tsunoda S. A plant exploration in Brassica and allied genera[J]. Tohoku J Agri Res, 1967, 17:249-277.
[35] Prakash S, Bhat S, Quiros C, et al. Brassica and its close allies: cytogenetics and evolution[J]. Plant Breed Rev, 2009, 31:21
[36] Soltis P S, Liu X, Marchant D B, et al. Polyploidy and novelty: Gottlieb’s legacy[J]. Phil Trans R Soc B, 2014, 369(1 648): 20130351.