Analysis of dry matter accumulation and yield traits for super high-yielding soybean Jiyu 86 in Xinjiang

ZHAO Jing, ZHANG Heng-bin, ZENG Kai, LUO Geng-tong, ZHAN Yong*

CHINESE JOURNAL OF OIL CROP SCIENCES ›› 2018, Vol. 40 ›› Issue (3) : 367.

PDF(2825 KB)
Welcome to CHINESE JOURNAL OF OIL CROP SCIENCES, May. 16, 2025
PDF(2825 KB)
CHINESE JOURNAL OF OIL CROP SCIENCES ›› 2018, Vol. 40 ›› Issue (3) : 367. DOI: 10.7505/j.issn.1007-9084.2018.03.008

 Analysis of dry matter accumulation and yield traits for super high-yielding soybean Jiyu 86 in Xinjiang

Author information +
History +

Abstract

In this study, Ji-yu 86, a soybean variety introduced in the early stage and super high-yielding in Xinjiang, was selected for this research, and Xin-dadou 23 with high yield potential in local area as control. The growth period, agronomic traits, leaf area index, net assimilation amount, leaf productivity and yield components were compared in order to elucidate the dry matter accumulation and yield traits of Jiyu 86 for the super high yield in Xinjiang, and to further provide theoretical basis for the high yield of Jiyu 86, and to assist in breeding super high yield cultivars. The results showed that after the first flowering stage, the root biomass of Ji-yu 86 was significantly higher than that of Xindadou 23, and flower pods biomass of Jiyu 86 was also relatively higher than that of Xindadou 23 in the whole growth period. Moreover, the pod dry weight of Ji-yu 86 was 16.7% higher than that of Xindadou 23 at maturity stage. Leaf area index and net assimilation of both cultivars were peaked at drumming stage, at which time the leaf area index of Xindadou 23 was 80% higher than that of Ji-yu 86. After drumming stage, net assimilation and leaf productivity of Jiyu 86 were significantly (P <0.05) higher than that of Xindadou 23. Jiyu 86 has relatively compact plant structure, suitable plant height, stem nodes number, less branches and significant population heterosis. In addition, single seed weight, 100-seed weight, harvested plant number of Jiyu 86 were significantly (P <0.05) higher than those of Xindadou 23. In general, the plant structure of Ji-yu 86 was reasonable with obvious population advantages, suitable leaf area index and high utilization rate of photosynthetic products, which could assist the transfer of dry matter accumulation from vegetative organs to grain and achieve a super high yield.

Key words

Xindadou 23 / Jiyu 86 / super high yield / dry matter accumulation / leaf area index

Cite this article

Download Citations
ZHAO Jing, ZHANG Heng-bin, ZENG Kai, LUO Geng-tong, ZHAN Yong* .  Analysis of dry matter accumulation and yield traits for super high-yielding soybean Jiyu 86 in Xinjiang[J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2018, 40(3): 367 https://doi.org/10.7505/j.issn.1007-9084.2018.03.008

References

 [1] 殷瑞锋, 徐雪高, 李登旺, 等. 2015年上半年中国大豆市场分析与后期展望[J]. 产品预测, 2015, 43 (8): 9- 11.

[2] 周 静, 谷强平, 杜吉到. 中国大豆进口依赖性及其对大豆进口安全的影响[J]. 大豆科学, 2015, 34(03): 503- 506.

[3] Chen G H, Wiattak P. Soybean development and yield are influenced by planting date and environment conditions in the southeastern coastal plain, United States [J]. Agronomy Journal, 2010, 102: 1731-1737.

[4] 姜 妍, 刘 燕, 刘 伟, 等. 不同施肥处理对滴灌大豆干物质积累及产量与效益的影响[J]. 作物杂志, 2011(5): 61-64.

[5] 李灿东, 郭 泰, 王志新, 等. 大豆叶面施氮对合农64叶片叶绿素含量及干物质积累的影响[J]. 中国农学通报, 2014, 30(9): 142- 145.

[6] 王维俊. 滴水量对中熟大豆超高产田干物质积累和产量的影响[J]. 大豆科学, 2015,34(1): 60-64.

[7] 张瑞朋, 付连舜, 佟 斌, 等. 密度及行距对不同大豆品种农艺性状及产量的影响[J]. 大豆科学, 2016, 34(3):423-427.

[8] 杨 峰,崔亮,黄 山,等.不同株型玉米套作大豆生长环境动态及群体产量研究[J]. 大豆科学, 2015, 34(3): 402- 407.

[9] 宋微微, 杜吉到, 郑殿峰, 等.大豆干物质积累、分配规律的研究进展[J]. 大豆科学, 2008, 27(6): 1062- 1066.

[10] 章建新, 薛丽华, 邢永峰, 等. 大豆粒、荚物质积累分配规律研究[J]. 新疆农业大学学报, 2008, 31(1): 22- 24.

[11] Yan Y H, Yang W Y, Zhang J. Effect of spraying uniconazole on dry matter accumulation and distribution of soybean after blooming [J]. World Applied Sciences Journal. 2009, 3(6):449-456.

[12] Ye Y L, Wang G, Huang Y E, et al. Understanding physiological processes associated with yield-trait relationships in modern wheat varieties [J]. Field Crops Research, 2011,124: 316-322.

[13] 张含彬, 伍晓燕, 杨文钰.氮肥对套作大豆干物质积累与分配的影响[J]. 大豆科学, 2006, 25(4): 404- 409.

[14]赵婧, 邱强, 张鸣浩, 等. 高产大豆品种的生理特征和产量性状研究[J]. 大豆科学, 2013, 32(4):482- 485.

[15] Saratha K D, Kumudini S, Hu me D J , eta1.Genetic improvement in short season soybeans in dry matter accumulation, partitioning leaf area duration [J]. Crop Science, 2001, 41(2): 391-398.

[16] James E. Board soybean cultivar differences on light interception and leaf area index during seed filling [J]. Agronomy Journal, 2004,96:305-310.

[17] 孙贵荒, 刘晓丽, 董丽杰, 等. 大豆叶面积指数消长与产量关系的研究[J]. 辽宁农业科学, 2003, 3(4): 13- 14.

[18] 罗赓彤, 战勇, 刘胜利, 等. 中黄35在新疆创大面积高产纪录[J]. 大豆科学, 2009, 28(6): 11-18.

[19] 刘志远, 董彦明, 罗翔宇, 等. 启动氮加追氮对大豆干物质积累及叶生产力的影响[J]. 东北农业大学学报, 2013, 44(10): 6- 10.

[20]刘超, 陈若礼. 夏大豆植株干物质积累数学模拟研究[J].大豆科技,2011,(6):17-20.

[21] 魏道智. 小麦根系活力变化与叶片衰老的研究[J]. 应用生态学报, 2004, 15 (9): 1565-1569.

[22]吴琼, 孙磊, 刘元英, 等. 氮密交互对大豆干物质在冠层中分布的影响[J].大豆科学,2015,(1):46-51.

[23]章建新, 翟云龙, 薛丽华. 密度对高产春大豆生长动态及干物质积累分配的影响[J]. 大豆科学, 2006, 25(1):1-5.

[24] Malone S D, Herbert A J, David L H. Evaluation of the LAI- 2000 plant analyzer to estimate leaf area in manually defoliated soybean [J]. Agronomy Journal, 2002, 94(5): 1012-1019.

[25]金剑, 刘晓冰, 王光华, 等. 大豆高产群体的生态生理特征[J]. 中国油料作物学报, 2003, 25(3): 109- 114.

[26]王文斌, 曹永强, 闫春娟, 等. 密度和植株配置对大豆主要农艺及生理性状的影响[J]. 大豆科学, 2014, 33(4): 502-506.

[27]杜吉到, 丁希武, 郑殿峰, 等. 不同密度下大豆叶部性状生长发育规律的研究[J]. 黑龙江农业科学, 2006(5): 40-43.

[28]刘玉平, 李瑞平, 李志刚. 栽培模式与密度对大豆冠层结构及产量的影响[J]. 大豆科学, 2010, 29(5): 796-799.
PDF(2825 KB)

1833

Accesses

0

Citation

Detail

Sections
Recommended

/