中国油料作物学报 ›› 2018, Vol. 40 ›› Issue (5): 679-.doi: 10.7505/j.issn.1007-9084.2018.05.010
Previous Articles Next Articles
Online:
2018-10-28
Published:
2018-12-27
HU Mao-long, PU Hui-ming*, ZHANG Jie-fu . Research advances of rapeseed germplasms with ALS-inhibiting herbicides resistance in China #br#[J]. 中国油料作物学报, 2018, 40(5): 679-.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jouroilcrops.cn/EN/10.7505/j.issn.1007-9084.2018.05.010
[1] 官春云. 优质油菜生理生态和现代栽培技术[M]. 北京: 中国农业出版社, 2013: 127-135. [2] 王汉中. 中国油菜生产抗灾减灾技术手册[M]. 北京: 中国农业科学技术出版社, 2009: 91-95. [3] Beckie H J, Harker K N, Hall L M, et al. A decade of herbicide-resistant crops in Canada[J]. Canadian Journal of Plant Science. 2006, 86(4): 1243-1264. [4] 浦惠明,戚存扣,张洁夫,等. 转基因抗除草剂油菜对近缘作物的基因漂移[J]. 生态学报. 2005(3): 581-588. [5] 浦惠明,戚存扣,张洁夫,等. 转基因抗除草剂油菜对十字花科杂草的基因漂移[J]. 生态学报. 2005(4): 910-916. [6] Tan S, Evans R, Singh B. Herbicidal inhibitors of amino acid biosynthesis and herbicide-tolerant crops[J]. Amino Acids. 2006, 30(2): 195-204. [7] Hamid A A, Aiyelaagbe O O, Balogun C A. Herbicides and its applications[J]. Advance in Natural and Applied Sciences. 2011, 2(5): 201-213. [8] Tan S, Evans R R, Dahmer M L, et al. Imidazolinone-tolerant crops: history, current status and future[J]. Pest Management Science. 2005, 61(3): 246-257. [9] Chipman D M, Duggleby R G, Tittmann K. Mechanisms of acetohydroxyacid synthases[J]. Current Opinion in Chemical Biology. 2005, 9(5): 475-481. [10] Mccourt J A, Pang S S, King-Scott J, et al. Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase[J]. Proceedings of the National Academy of Sciences of the USA. 2006, 103(3): 569-573. [11] Powles S B, Yu Q. Evolution in action: plants resistant to herbicides[J]. Annual Review of Plant Biology. 2010, 61: 317-347. [12] Ray T B. Site of action of chlorsulfuron: inhibition of valine and isoleucine biosynthesis in plants[J]. Plant Physiology. 1984, 75(3): 827-831. [13] Yu Q, Powles S B. Resistance to AHAS inhibitor herbicides: current understanding[J]. Pest Management Science. 2014, 70(9): 1340-1350. [14] Li D, Barclay I, Jose K, et al. A mutation at the Ala122 position of acetohydroxyacid synthase (AHAS) located on chromosome 6D of wheat: improved resistance to imidazolinone and a faster assay for marker assisted selection[J]. Molecular Breeding. 2008, 22(2): 217-225. [15] Sala C A, Bulos M, Echarte M, et al. Molecular and biochemical characterization of an induced mutation conferring imidazolinone resistance in sunflower[J]. Theoretical and Applied Genetics. 2008, 118(1): 105-112. [16] Ghio C, Ramos M L, Altieri E, et al. Molecular characterization of Als1, an acetohydroxyacid synthase mutation conferring resistance to sulfonylurea herbicides in soybean[J]. Theoretical and Applied Genetics. 2013, 126(12): 2957-2968. [17] Cui H L, Li X, Wang G, et al. Acetolactate synthase proline (197) mutations confer tribenuron-methyl resistance in Capsella bursa-pastoris populations from China[J]. Pesticide Biochemistry and Physiology. 2012, 102(3): 229-232. [18] Xia W, Pan L, Li J, et al. Molecular basis of ALS- and/or ACCase-inhibitor resistance in shortawn foxtail (Alopecurus aequalis Sobol.)[J]. Pesticide Biochemistry and Physiology. 2015, 122: 76-80. [19] Hatami Z M, Gherekhloo J, Rojano-Delgado A M, et al. Multiple mechanisms increase levels of resistance in Rapistrum rugosum to ALS herbicides[J]. Frontiers in Plant Science. 2016, 7. [20] Brosnan J T, Vargas J J, Breeden G K, et al. A new amino acid substitution (Ala-205-Phe) in acetolactate synthase (ALS) confers broad spectrum resistance to ALS-inhibiting herbicides[J]. Planta. 2016, 243(1): 149-159. [21] Ashigh J, Rajcan I, Tardif F J. Genetics of resistance to acetohydroxyacid synthase inhibitors in populations of eastern black nightshade (Solanum Ptychanthum) from Ontario[J]. Weed Science. 2008, 56(2): 210-215. [22] Thompson C, Tar'An B. Genetic characterization of the acetohydroxyacid synthase (AHAS) gene responsible for resistance to imidazolinone in chickpea (Cicer arietinum L.)[J]. Theoretical and Applied Genetics. 2014, 127(7): 1583-1591. [23] Christoffers M J, Wehking T R. Target-site resistance to acetolactate synthase inhibitors in wild mustard (Sinapis arvensis)[J]. Weed Science. 2006, 54(2): 191-197. [24] Sala C A, Bulos M. Inheritance and molecular characterization of broad range tolerance to herbicides targeting acetohydroxyacid synthase in sunflower[J]. Theoretical and Applied Genetics. 2012, 124(2): 355-364. [25] Jimenez F, Rojano-Delgado A M, Fernandez P T, et al. Physiological, biochemical and molecular characterization of an induced mutation conferring imidazolinone resistance in wheat[J]. Physiology Plant. 2016, 158(1): 2-10. [26] Pozniak C J, Birk I T, O'Donoughue L S, et al. Physiological and molecular characterization of mutation-derived imidazolinone resistance in spring wheat[J]. Crop Science. 2004, 44(4): 1434-1443. [27] Shoba D, Raveendran M, Manonmani S, et al. Development and genetic characterization of a novel herbicide (imazethapyr) tolerant mutant in rice (Oryza sativa L.)[J]. Rice. 2017, 10(1). [28] Piao Z, Wang W, Wei Y, et al. Characterization of an acetohydroxy acid synthase mutant conferring tolerance to imidazolinone herbicides in rice (Oryza sativa)[J]. Planta. 2018, 247(3): 693-703. [29] 胡茂龙,浦惠明,高建芹,等. 油菜乙酰乳酸合成酶抑制剂类除草剂抗性突变体M9的遗传和基因克隆[J]. 中国农业科学. 2012(20): 4326-4334. [30] Duggleby R G, Mccourt J A, Guddat L W. Structure and mechanism of inhibition of plant acetohydroxyacid synthase[J]. Plant Physiology and Biochemistry. 2008, 46(3): 309-324. [31] Rutledge R G, Quellet T, Hattori J, et al. Molecular characterization and genetic origin of the Brassica napus acetohydroxyacid synthase multigene family[J]. Molecular Genetics and Genomics. 1991, 229(1): 31-40. [32] Wiersma P A, Schmiemann M G, Condie J A, et al. Isolation, expression and phylogenetic inheritance of an acetolactate synthase gene from Brassica napus[J]. Molecular Genetics and Genomics. 1989, 219(3): 413-420. [33] Ouellet T, Rutledge R G, Miki B L. Members of the acetohydroxyacid synthase multigene family of Brassica napus have divergent patterns of expression[J]. Plant Journal. 1992, 2(3): 321-330. [34] Swanson E B, Herrgesell M J, Arnoldo M, et al. Microspore mutagenesis and selection: Canola plants with field tolerance to the imidazolinones.[J]. Theoretical and Applied Genetics. 1989, 78(4): 525-530. [35] Hattori J, Douglas B, Mourad G, et al. An acetohydroxy acid synthase mutant reveals a single site involved in multiple herbicide resistance[J]. Molecular Genetics and Genomics. 1995, 246(4): 419-425. [36] 高建芹,浦惠明,戚存扣,等. 抗咪唑啉酮油菜种质的发现与鉴定[J]. 植物遗传资源学报. 2010(3): 369-373. [37] 高建芹,浦惠明,龙卫华,等. 抗咪唑啉酮油菜对非选择性除草剂的抗性效应[J]. 江苏农业学报. 2010(6): 1186-1191. [38] 张婷,师志刚,王根平,等. 咪唑乙烟酸对冀谷33生长发育的影响及对后茬作物的安全性[J]. 中国农业科学. 2015(24): 4916-4923. [39] 浦惠明,胡茂龙,高建芹,等. 一种基于ALS靶酶的抗除草剂油菜定向选育方法[P]. 201310054645.9. 2013-05-01. [40] 胡茂龙,浦惠明,龙卫华,等. 具有除草剂抗性的乙酰乳酸合酶突变蛋白及其应用[P]. 2017-10-13. [41] Li H T, Li J J, Zhao B, et al. Generation and characterization of tribenuron-methyl herbicide-resistant rapeseed (Brasscia napus) for hybrid seed production using chemically induced male sterility[J]. Theoretical and Applied Genetics. 2015, 128(1): 107-118. [42] 曲高平,孙妍妍,庞红喜,等. 甘蓝型油菜EMS突变体库构建及抗除草剂突变体筛选[J]. 中国油料作物学报. 2014(1): 25-31. [43] 孙妍妍,曲高平,黄谦心,等. 甘蓝型油菜抗苯磺隆突变体ALS基因分析与SNP标记[J]. 中国油料作物学报. 2015(5): 589-595. [44] 李小童,吴磊,贾艳丽,等. 油菜新种质12WH318咪唑啉酮抗性遗传及基因克隆和表达[J]. 中国油料作物学报. 2015(3): 269-276. [45] 刘东风,王承旭,唐晓艳,等. 甘蓝型油菜抗除草剂蛋白及其在植物育种中的应用[P]. 201310116228.2. 2013-07-24. [46] 方军,朴钟泽,万常照,等. 具有抗除草剂活性的油菜蛋白质、其编码基因及其应用[P]. 201710069534.5. 2017-05-31. [47] 陈松,浦惠明,彭琦,等. 基于体外定点突变获得的油菜抗多种ALS抑制剂类除草剂基因及应用[P]. 201710166233.2. 2017-08-18. [48] Hu M L, Pu H M, Kong L N, et al. Molecular characterization and detection of a spontaneous mutation conferring imidazolinone resistance in rapeseed and its application in hybrid rapeseed production[J]. Molecular Breeding. 2015, 35(1). [49] 浦惠明,高建芹,龙卫华,等. 油菜抗咪唑啉酮性状的遗传及其应用[J]. 中国油料作物学报. 2011(1): 15-19. [50] 胡茂龙,浦惠明,戚存扣,等. 一种检测甘蓝型油菜抗咪唑啉酮类除草剂基因的分子标记方法[P]. 201210291068.0. 2012-11-07. [51] 胡茂龙,龙卫华,高建芹,等. 油菜抗咪唑啉酮类除草剂基因BnALS1R等位基因特异PCR标记的开发与应用[J]. 作物学报. 2013(10): 1711-1719. [52] 胡茂龙,浦惠明,戚存扣,等. 抗咪唑啉酮类除草剂的甘蓝型油菜突变基因及其应用[P]. 201010232607.4. 2011-01-05. [53] 胡茂龙,孔令娜,龙卫华,等. 油菜乙酰羟基酸合酶基因BnAHAS1的克隆及其重组蛋白质的原核表达[J]. 江苏农业学报. 2014(5): 986-991. [54] 胡茂龙,浦惠明,龙卫华,等. 油菜乙酰乳酸合酶突变体S638N的酶学特性及其对ALS类除草剂的抗性[J]. 作物学报. 2015(9): 1353-1360. [55] Hu M L, Pu H M, Gao J Q, et al. Inheritance and molecular characterization of resistance to AHAS-inhibiting herbicides in rapeseed[J]. Journal of Integrative Agriculture. 2017, 16(11): 2421-2433. [56] 胡茂龙,浦惠明,龙卫华,等. 一种甘蓝型油菜抗磺酰脲类除草剂基因及其应用[P]. 201310111739.5. 2013-08-28. [57] 胡茂龙,浦惠明,龙卫华,等. 检测甘蓝型油菜抗磺酰脲类除草剂基因BnALS3R的引物与应用[P]. 201510213846.8. 2015-07-22. [58] 浦惠明,胡茂龙,高建芹,等. 应用抗除草剂突变性状提高杂交油菜种植纯度的方法[P]. 201210497564.1. 2013-03-06. [59] Zhao L, Jing X, Chen L, et al. Tribenuron-methyl induces male sterility through anther-specific inhibition of acetolactate synthase leading to autophagic cell death[J]. Molecular Plant, 2015, 8(12): 1710-1724. [60] Lv J, Huang Q, Sun Y, et al. Male sterility of an AHAS-mutant induced by tribenuron-methyl solution correlated with the decrease of AHAS activity in Brassica napus L[J]. Front Plant Sci, 2018, 9: 1014. [61] 刘克德,吴江生,刘超,等. 利用抗除草剂基因的油菜化学杀雄制种方法[P]. 201410314435.3. 2014-11-05. |
[1] | ZHOU Xin,YAO Xuan,NIE Li-xuan,YI Zhi-jie,CIREN Zhuoma,YANG Te-wu* . Effects of several plant regulators on waterlogging tolerance of Brassica napus during radicle growth [J]. 中国油料作物学报, 2019, 41(6): 914-. |
[2] | FENG Tao,TAN Hui,XU Jiang-lin,GUAN Chun-yun* . Epibrassinolide regulation on oilseed rape (Brassica napus L.) in different period [J]. 中国油料作物学报, 2019, 41(6): 904-. |
[3] | BI Ying-dong,LIU Ming,ZHOU Guang-sheng,DI Shu-feng,LI Wei,LIU Miao,WANG Ling,LIU Jian-xin,FAN Chao,YANG Guang,FU Ting-dong,LAI Yong-cai* . Selection and cultivation of forage rapeseed in Heilongjiang Province [J]. 中国油料作物学报, 2019, 41(6): 835-. |
[4] | MA Zhi-li1,,CHEN Wen-chao,ZHU Xiang-zhi,HUANG Feng-hong,DENG Qian-chun,WAN Xia* . Review on antioxidant components from rapeseed [J]. 中国油料作物学报, 2019, 41(6): 998-. |
[5] | WEI Ya-qi,WEI Wen-liang,LIU Dao-min,ZHANG Jiang-jiang,ZHAN Jie-peng,SHI Jia-qin*, WANG Xin-fa,LIU Gui-hua . QTL mapping and candidate genes analysis for flowering time in rapeseed (Brassica napus L.) [J]. 中国油料作物学报, 2019, 41(5): 679-. |
[6] | WANG Jian-qiang,HAN Pei-pei,LI Yin-shui,LIAO Xing,QIN Lu* . Difference in root morphology and nutrient accumulation of rapeseed (Brassica napus L.) with contrasting N efficiency [J]. 中国油料作物学报, 2019, 41(5): 758-. |
[7] | CHEN Jiao,XIE Xiao-yu*,ZHANG Xiao-duan,XING Yi,MA Shu-min . Seedling drought resistance and parameter screening of rapeseed [J]. 中国油料作物学报, 2019, 41(5): 713-. |
[8] | HUANG He,YAN Lei,LYU Yan,DING Xiao-yu,CAI Jun-song,CHENG Yong,ZHANG Xue-kun1,ZOU Xi-ling*. Screening and evaluation of low temperature tolerance of rapeseed (Brassica napus L.) at germination stage [J]. 中国油料作物学报, 2019, 41(5): 723-. |
[9] | LIU Cheng,FENG Zhong-chao,XIAO Tang-hua,MA Xiao-min,ZHOU Guang-sheng,HUANG Fenghong, LI Jia-na,WANG Han-zhong*. Development, potential and adaptation of Chinese rapeseed industry [J]. 中国油料作物学报, 2019, 41(4): 485-. |
[10] | WANG Wang-nian, WANG Zong-kai, WANG Bo*, GUO An-guo,YANG Hua, LIU Fang, KUAI Jie, FU Ting-dong, ZHOU Guang-sheng. Benefits of mixed cropping of forage rapeseed with other forage crops [J]. 中国油料作物学报, 2019, 41(3): 317-. |
[11] | CHEN Dao-zong, LIU Yi, FU Wen-qin, GE Xian-hong*, Li Zai-yun . Progress on genetics and breeding of rapeseed (Brassica napus L.) with colored flowers [J]. 中国油料作物学报, 2019, 41(3): 309-. |
[12] | MI Chao, ZHAO Yan-ning§, LIU Zi -gang*, SUN Wan-cang, ZOU Ya, XU Ming-xia . Cloning and expression of HSC70-1 and differential proteomics analysis of winter rapeseed (Brassica rapa) under drought [J]. 中国油料作物学报, 2019, 41(2): 166-. |
[13] | GAO Kai-xiu,Gao Wen-han,MING Jin,LI Lan-tao,WANG Shan-qin*,LU Jian-wei. Monitoring of nitrogen nutrition in winter rapeseed using UAV-borne multispectral data [J]. 中国油料作物学报, 2019, 41(2): 232-. |
[14] | WEI Quan-quan, GOU Jiu-lan, ZHANG Meng, XIAO Hou-jun, RAO Yong, XIAO Hua-gui* . Nitrogen diagnosis technology and application development in winter rapeseednull [J]. 中国油料作物学报, 2019, 41(2): 300-. |
[15] | LI Xin, XIAO Lu, DU De-zhi*. Reviews of genetic regulation and QTLs of flowering time in rapeseed [J]. 中国油料作物学报, 2019, 41(2): 283-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||