中国油料作物学报 ›› 2019, Vol. 41 ›› Issue (2): 283-.doi: 10.7505/j.issn.1007-9084.2019.02.018
Previous Articles Next Articles
Online:
2019-04-28
Published:
2019-07-04
LI Xin, XIAO Lu, DU De-zhi*. Reviews of genetic regulation and QTLs of flowering time in rapeseed[J]. 中国油料作物学报, 2019, 41(2): 283-.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jouroilcrops.cn/EN/10.7505/j.issn.1007-9084.2019.02.018
[1] 王 璐.中国油菜产业安全研究[D].武汉:华中农业大学,2014. [2] 官春云,陈社员,吴明亮.南方双季稻区冬油菜早熟品种选育和机械栽培研究进展[J].中国工程科学,2010,12:4-10. [3] 蔡 静.甘蓝型油菜一个主效开花期 QTL qFT c2-1 的精细定位[D].武汉:华中农业大学,2016. [4] 杜德志,聂 平,徐 亮,等.不同生态类型甘蓝型油菜在青海生态条件下的杂种优势表现[J].中国油料学报,2012,34(4):180-186. [5] 罗玉秀.春油菜几个性状的基因定位[D].杨凌:西北农林科技大学,2012. [6] Campbell D C, Kondra Z P. A genetic study of growth characters and yield characters of oilseed rape [J]. Euphytica, 1978, 27(1): 177-183. [7] Yang Y W, Lai K N, Tai P Y, et al. Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages[J]. J Mol Evol, 1999, 48(5): 597-604. [8] Fornara F, de Montaigu A, Coupland G. SnapShot: control of flowering in Arabidopsis [J]. Cell, 2010, 141(3): 550-550. e2. [9] Simpson G G, Dean C. Arabidopsis, the Rosetta stone of flowering time? [J]. Science, 2002, 296(5566): 285-289. [10] Sawa M, Nusinow D A, Kay S A, et al. FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis [J]. Science, 2007, 318(5848): 261-265. [11] Searle I, He Y, Turck F, et al. The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis [J]. Gene Dev, 2006, 20(7): 898-912. [12] Imaizumi T, Schultz T F, Harmon F G, et al. FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis [J]. Science, 2005, 309(5732): 293-297. [13] He Y. Control of the transition to flowering by chromatin modifications [J]. Mol Plant, 2009, 2(4): 554-564. [14] Geraldo N, Bäurle I, Kidou S, et al. FRIGIDA delays flowering in Arabidopsis via a cotranscriptional mechanism involving direct interaction with the nuclear cap-binding complex[J]. Plant Physiol, 2009, 150(3): 1 611-1 618. [15] Levy Y Y, Mesnage S, Mylne J S, et al. Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control [J]. Science, 2002, 297(5579): 243-246. [16] Gendall A R, Levy Y Y, Wilson A, et al. The VERNALIZATION 2 gene mediates the epigenetic regulation of vernalization in Arabidopsis [J]. Cell, 2001, 107(4): 525-535. [17] 张生萍.新型春性甘蓝型油菜开花相关基因的筛选及表达模式研究[D].西宁:青海大学,2017. [18] Blazques M A, Green R, Nilsson O, et al. Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter [J]. The Plant Cell, 1998, 10: 791-800. [19] Mouradov A, Cremer F, Coupland G. Control of flowering time: interacting pathways as a basis for diversity [J]. The Plant Cell, 2002, 14(suppl 1): S111-S130. [20] Noh B, Lee S H, Kim H J, et al. Divergent roles of a pair of homologous jumonji/zinc-finger–class transcription factor proteins in the regulation of Arabidopsis flowering time[J]. The Plant Cell, 2004, 16(10): 2601-2613. [21] Amasino R. Seasonal and developmental timing of flowering [J]. The Plant J, 2010, 61(6): 1 001-1 013. [22] Wu G, Park M Y, Conway S R, et al. The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis [J]. Cell, 2009, 138(4): 750-759. [23] Posé D, Verhage L, Ott F, et al. Temperature-dependent regulation of flowering by antagonistic FLM variants[J]. Nature, 2013, 503(7476): 414-417. [24] Lee J H, Yoo S J, Park S H, et al. Role of SVP in the control of flowering time by ambient temperature in Arabidopsis[J]. Gene Dev, 2007, 21(4): 397-402. [25] Lee J H, Ryu H S, Chung K S, et al. Regulation of temperature-responsive flowering by MADS-box transcription factor repressors [J]. Science, 2013, 342(6158): 628-632. [26] Lutz U, Posé D, Pfeifer M, et al. Modulation of ambient temperature-dependent flowering in Arabidopsis thaliana by natural variation of FLOWERING LOCUS M [J]. PLoS Genet, 2015, 11(10): e1005588. [27] Shah S, Weinholdt C, Jedrusik N, et al. Whole transcriptome analysis reveals genetic factors underlying flowering time regulation in rapeseed (Brassica napus L.)[J]. Plant Cell Environ, 2018, 41:1 935-1 947. [28] Li B, Zhao W, Li D, et al. Genetic dissection of the mechanism of flowering time based on an environmentally stable and specific QTL in Brassica napus[J]. Plant Sci, 2018, 277: 296-310. [29] Lou P, Zhao J, Kim J S, et al. Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa[J]. J Exp Bot, 2007, 58(14): 4 005-4 016. [30] Lan T H, Paterson A H. Comparative mapping of quantitative trait loci sculpting the curd of Brassica oleracea[J]. Genetics, 2000, 155(4): 1 927-1 954. [31] 徐云碧.分子数量遗传学[M].北京:中国农业出版社,1994. [32] 林 谦,毛孝强,杨 德,等.QTL作图主要统计方法及主要作图群体[J].云南农业大学学报,2004,19(2):121-127. [33] Lou P, Xie Q, Xu X, et al. Genetic architecture of the circadian clock and flowering time in Brassica rapa[J]. Theor Appl Genet, 2011, 123(3): 397-409. [34] Zhao J, Kulkarni V, Liu N, et al. BrFLC2 (FLOWERING LOCUS C) as a candidate gene for a vernalization response QTL in Brassica rapa[J]. J Exp Bot, 2010, 61(6): 1817-1825. [35] 蔡长春,傅廷栋,陈宝元,等.甘蓝型油菜遗传图谱的构建及开花期的QTL分析[J].中国油料作物学报,2007,29(1):1-8. [36] Ferreira M E, Satagopan J, Yandell B S, et al. Mapping loci controlling vernalization requirement and flowering time in Brassica napus[J]. Theor Appl Genet, 1995, 90(5): 727-732. [37] Butruille D V, Guries R P, Osborn T C. Linkage analysis of molecular markers and quantitative trait loci in populations of inbred backcross lines of Brassica napus L. [J]. Genetics, 1999, 153(2): 949-964. [38] Long Y, Shi J, Qiu D, et al. Flowering time quantitative trait loci analysis of oilseed Brassica in multiple environments and genomewide alignment with Arabidopsis [J]. Genetics, 2007, 177(4): 2433-2444. [39] Mei D S, Wang H Z, Hu Q, et al. QTL analysis on plant height and flowering time in Brassica napus[J]. Plant Breeding, 2009, 128(5): 458-465. [40] Raman H, Raman R, Eckermann P, et al. Genetic and physical mapping of flowering time loci in canola (Brassica napus L.)[J]. Theor Appl Genet, 2013, 126(1): 119-132. [41] Liu H, Du D, Guo S, et al. QTL analysis and the development of closely linked markers for days to flowering in spring oilseed rape (Brassica napus L.)[J]. Mol Breeding, 2016, 36(5): 52. [42] Javed N, Geng J, Tahir M, et al. Identification of QTL influencing seed oil content, fatty acid profile and days to flowering in Brassica napus L. [J]. Euphytica, 2016, 207(1): 191-211. [43] 黄吉祥,熊化鑫,潘 兵,等. 油菜开花期QTL定位及与粒重的遗传关联性[J]. 中国农业科学,2016,49(16):3 073-3 083. [44] Wang N, Chen B, Xu K, et al. Association mapping of flowering time QTLs and insight into their contributions to rapeseed growth habits [J]. Front Plant Sci, 2016, 7: 338. [45] Xu L, Hu K, Zhang Z, et al. Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.)[J]. DNA Res, 2015, 23(1): 43-52. [46] 熊化鑫. 油菜开花期QTL分析以及三个主效QTL的精细定位[D].金华:浙江师范大学,2016. [47] Shen Y, Xiang Y, Xu E, et al. Major co-localized QTL for plant height, branch initiation height, stem diameter, and flowering time in an alien introgression derived Brassica napus DH population [J]. Front Plant Sci, 2018, 9: 390. [48] Zhang F, Huang J, Tang M, et al. Syntenic QTL and genomic divergence for Sclerotinia resistance and flowering time in Brassica napus[J]. J Integr Plant Biol, 2019, 61(1): 75-88. [49] Li F, Kitashiba H, Inaba K, et al. A Brassica rapa linkage map of EST-based SNP markers for identification of candidate genes controlling flowering time and leaf morphological traits [J]. DNA Res, 2009, 16(6): 311-323. [50] Tadege M, Sheldon C C, Helliwell C A, et al. Control of flowering time by FLC orthologues in Brassica napus[J]. The Plant J, 2001, 28(5): 545-553. [51] Schranz M E, Quijada P, Sung S B, et al. Characterization and effects of the replicated flowering time gene FLC in Brassica rapa[J]. Genetics, 2002, 162(3): 1 457-1 468. [52] Kim S Y, Park B S, Kwon S J, et al. Delayed flowering time in Arabidopsis and Brassica rapa by the overexpression of FLOWERING LOCUS C (FLC) homologs isolated from Chinese cabbage (Brassica rapa L. ssp. pekinensis)[J]. Plant Cell Rep, 2007, 26(3): 327-336. [53] Hou J, Long Y, Raman H, et al. A Tourist-like MITE insertion in the upstream region of the BnFLC. A10 gene is associated with vernalization requirement in rapeseed (Brassica napus L.)[J]. BMC Plant Biol, 2012, 12(1): 238. [54] 侯锦娜.甘蓝型油菜开花 QTL-qFT10-4-的图位克隆及候选基因 BnFLC. A10 的表达调控研究[D].武汉:华中农业大学,2013. [55] Chen L, Dong F, Cai J, et al. A 2.833-kb Insertion in BnFLC. A2 and Its Homeologous Exchange with BnFLC. C2 during Breeding Selection Generated Early-Flowering Rapeseed [J]. Mol Plant, 2018, 11(1): 222-225. [56] Xi X, Wei K, Gao B, et al. BrFLC5: a weak regulator of flowering time in Brassica rapa[J]. Theor Appl Genet, 2018, 131(10): 2 107-2 116. [57] Robert L S, Robson F, Sharpe A, et al. Conserved structure and function of the Arabidopsis flowering time gene CONSTANS in Brassica napus[J]. Plant Mol Biol, 1998, 37(5): 763-772. [58] 郑本川,张锦芳,李浩杰,等.甘蓝型油菜开花调控转录因子CONSTANS的表达分析[J].中国农业科学,2013,46(12):2592-2598. [59] Wang J, Long Y, Wu B, et al. The evolution of Brassica napus FLOWERING LOCUST paralogues in the context of inverted chromosomal duplication blocks [J]. BMC Evol Biol, 2009, 9(1): 271. [60] Bernatzky R, Tanksley S D. Toward a saturated linkage map in tomato based on isozymes and random cDNA sequences [J]. Genetics, 1986, 112(4): 887-898. [61] 董少玲,张颖慧,张亚东,等.水稻重组自交系分子遗传图谱构建及分蘖角的QTL检测[J].江苏农业学报,2012,28(2):236-242. [62] 王必庆,王国槐.油菜早熟性研究进展[J].作物研究,2009,23(05):336-338. [63] Braatz J, Harloff H J, Mascher M, et al. CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus)[J]. Plant Physiol, 2017, 174(2): 935-942. [64] Cai C C, Tu J X, Fu T D, et al. The genetic basis of flowering time and photoperiod sensitivity in rapeseed Brassica napus L. [J]. Russ J Genet+, 2008, 44(3): 326-333. [65] 张 豹.甘蓝型油菜导入系构建、重要农艺性状QTL分析和白花基因克隆[D].武汉:华中农业大学,2015. |
[1] | ZHOU Xin,YAO Xuan,NIE Li-xuan,YI Zhi-jie,CIREN Zhuoma,YANG Te-wu* . Effects of several plant regulators on waterlogging tolerance of Brassica napus during radicle growth [J]. 中国油料作物学报, 2019, 41(6): 914-. |
[2] | FENG Tao,TAN Hui,XU Jiang-lin,GUAN Chun-yun* . Epibrassinolide regulation on oilseed rape (Brassica napus L.) in different period [J]. 中国油料作物学报, 2019, 41(6): 904-. |
[3] | ZHOU Xiao-jing,LEI Yong,XIA You-lin,QI Yan,YAN Li-ying,REN Xiao-ping,HUANG Li,LUO Huai-yong,LIU Nian,CHEN Wei-gang,CHEN Yu-ning,LIAO Bo-shou,JIANG Hui-fang* . QTL mapping for traits of pod size and weight in cultivated peanut (Arachis hypogaea L.) [J]. 中国油料作物学报, 2019, 41(6): 869-. |
[4] | BI Ying-dong,LIU Ming,ZHOU Guang-sheng,DI Shu-feng,LI Wei,LIU Miao,WANG Ling,LIU Jian-xin,FAN Chao,YANG Guang,FU Ting-dong,LAI Yong-cai* . Selection and cultivation of forage rapeseed in Heilongjiang Province [J]. 中国油料作物学报, 2019, 41(6): 835-. |
[5] | MA Zhi-li1,,CHEN Wen-chao,ZHU Xiang-zhi,HUANG Feng-hong,DENG Qian-chun,WAN Xia* . Review on antioxidant components from rapeseed [J]. 中国油料作物学报, 2019, 41(6): 998-. |
[6] | WEI Ya-qi,WEI Wen-liang,LIU Dao-min,ZHANG Jiang-jiang,ZHAN Jie-peng,SHI Jia-qin*, WANG Xin-fa,LIU Gui-hua . QTL mapping and candidate genes analysis for flowering time in rapeseed (Brassica napus L.) [J]. 中国油料作物学报, 2019, 41(5): 679-. |
[7] | WANG Jian-qiang,HAN Pei-pei,LI Yin-shui,LIAO Xing,QIN Lu* . Difference in root morphology and nutrient accumulation of rapeseed (Brassica napus L.) with contrasting N efficiency [J]. 中国油料作物学报, 2019, 41(5): 758-. |
[8] | CHEN Jiao,XIE Xiao-yu*,ZHANG Xiao-duan,XING Yi,MA Shu-min . Seedling drought resistance and parameter screening of rapeseed [J]. 中国油料作物学报, 2019, 41(5): 713-. |
[9] | HUANG He,YAN Lei,LYU Yan,DING Xiao-yu,CAI Jun-song,CHENG Yong,ZHANG Xue-kun1,ZOU Xi-ling*. Screening and evaluation of low temperature tolerance of rapeseed (Brassica napus L.) at germination stage [J]. 中国油料作物学报, 2019, 41(5): 723-. |
[10] | LIU Cheng,FENG Zhong-chao,XIAO Tang-hua,MA Xiao-min,ZHOU Guang-sheng,HUANG Fenghong, LI Jia-na,WANG Han-zhong*. Development, potential and adaptation of Chinese rapeseed industry [J]. 中国油料作物学报, 2019, 41(4): 485-. |
[11] | WANG Wang-nian, WANG Zong-kai, WANG Bo*, GUO An-guo,YANG Hua, LIU Fang, KUAI Jie, FU Ting-dong, ZHOU Guang-sheng. Benefits of mixed cropping of forage rapeseed with other forage crops [J]. 中国油料作物学报, 2019, 41(3): 317-. |
[12] | CHEN Dao-zong, LIU Yi, FU Wen-qin, GE Xian-hong*, Li Zai-yun . Progress on genetics and breeding of rapeseed (Brassica napus L.) with colored flowers [J]. 中国油料作物学报, 2019, 41(3): 309-. |
[13] | MI Chao, ZHAO Yan-ning§, LIU Zi -gang*, SUN Wan-cang, ZOU Ya, XU Ming-xia . Cloning and expression of HSC70-1 and differential proteomics analysis of winter rapeseed (Brassica rapa) under drought [J]. 中国油料作物学报, 2019, 41(2): 166-. |
[14] | GAO Kai-xiu,Gao Wen-han,MING Jin,LI Lan-tao,WANG Shan-qin*,LU Jian-wei. Monitoring of nitrogen nutrition in winter rapeseed using UAV-borne multispectral data [J]. 中国油料作物学报, 2019, 41(2): 232-. |
[15] | WEI Quan-quan, GOU Jiu-lan, ZHANG Meng, XIAO Hou-jun, RAO Yong, XIAO Hua-gui* . Nitrogen diagnosis technology and application development in winter rapeseednull [J]. 中国油料作物学报, 2019, 41(2): 300-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||