中国油料作物学报 ›› 2019, Vol. 41 ›› Issue (6): 986-.doi: 10.19802/j.issn.1007-9084.2019160
Previous Articles Next Articles
Online:
2019-12-28
Published:
2019-12-20
LI Li1, CUI Shun-li, MU Guo-jun, YANG Xin-lei, HOU Ming-yu, LI Wen-ping, LIU Fu-qiang,LIU Li-feng* . Research progress of peanut breeding with high oleic acid[J]. 中国油料作物学报, 2019, 41(6): 986-.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jouroilcrops.cn/EN/10.19802/j.issn.1007-9084.2019160
[1] Arya S S,Salve A R,Chauhan S. Peanuts as functional food:a review[J]. J Food Sci Technol,2016,531:31- 41. [2] Shasidhar Y,Vishwakarma M K,Pandey M K,et al. Molecular mapping of oil content and fatty acids using dense genetic maps in groundnut(Arachis hypogaea L.) [J]. Front Plant Sci,2017,8:794. [3] Davis J P,Dean L O,Faircloth W H,et al. Physical 9 中国油料作物学报2019,41(6) and chemical characterizations of normal and high-oleic oils from nine commercial cultivars of peanut[J]. J Am Oil Chem Soc,2008,853:235-243. [4] Uematsu T,Parkányiová L,Endo T,et al. Effect of the unsaturation degree on browning reactions of peanut oil and other edible oils with proteins under storage and fry? ing conditions[C]//International Congress Series. Elsevi? er,2002,1245:445-446. [5] Mercer L C,Wynne J C,Young C T. Inheritance of fatty acid content in peanut oil1[J]. Peanut Sci,1990,171: 17-21. [6] Miller J F,Zimmerman D C,Vick B A. Genetic control of high oleic acid content in sunflower oil1[J]. Crop Sci, 1987,275:923. [7] Huth P J,Fulgoni V L III,Larson B T. A systematic re? view of high-oleic vegetable oil substitutions for other fats and oils on cardiovascular disease risk factors:impli? cations for novel high-oleic soybean oils[J]. Adv Nutr, 2015,66:674-693. [8] Toborek M,Lee Y W,Garrido R,et al. Unsaturated fat? ty acids selectively induce an inflammatory environment in human endothelial cells[J]. Am J Clin Nutr,2002, 751:119-125. [9] Chong E W T,Sinclair A J,Guymer R H. Facts on fats [J]. Clin Exp Ophthalmol,2006,345:464-471. [10] Broun P,Gettner S,Somerville C. Genetic engineering of plant lipids[J]. Annu Rev Nutr,1999,191:197- 216. [11] Norden A J,Gorbet D W,Knauft D A,et al. Variability in oil quality among peanut genotypes in the Florida breeding program1[J]. Peanut Sci,1987,141:7-11. [12] Moore K M,Knauft D A. The inheritance of high oleic acid in peanut[J]. Journal of Heredity,1989,803: 252-253. [13] Moore K M. High oleic acid peanut[P]. 1999. US 5945578. [14] Horn M E ,Eikenberry E J ,Lanuza J E R ,et al. High stability peanut[P]. 1999. US5684232 [15] Yu S L,Pan L J,Yang Q L,et al. Comparison of the Δ12 fatty acid desaturase gene between high-oleic and nor? mal-oleic peanut genotypes[J]. J Genet Genom,2008, 3511:679-685. [16] Chu Y,Holbrook C C,Ozias-Akins P. Two alleles of control the high oleic acid trait in cultivated peanut[J]. Crop Sci,2009,496:2029. [17] Ray T K,Holly S P,Knauft D A,et al. The primary de? fect in developing seed from the high oleate variety of peanut(Arachis hypogaea L.)is the absence of Δ12-de? saturase activity[J]. Plant Sci,1993,911:15-21. [18] Jung S,Swift D,Sengoku E,et al. The high oleate trait in the cultivated peanut(Arachis hypogaea L.). I. Isola? tion and characterization of two genes encoding micro? somal oleoyl-PC desaturases[J]. Mol Gen Genet Mgg, 2000,2635:796-805. [19] Fang C Q,Wang C T,Wang P W,et al. Identification of a novel mutation in FAD2B from a peanut EMS mutant with elevated oleate content[J]. J Oleo Sci,2012,613: 143-148. [20] Nadaf H L,Biradar K,Murthy G S S,et al. Novel muta? tions in oleoyl-PC desaturase (AhFAD2B) identified from new high oleic mutants induced by gamma rays in peanu[t J]. Crop Sci,2017,575:2538-2546. [21] Wang M L,Tonnis B,An Y Q C,et al. Newly identified natural high-oleate mutant from Arachis hypogaea L. sub? sp. hypogaea[J]. Mol Breeding,2015,359:186. [22] Patel M,Jung S,Moore K,et al. High-oleate peanut mutants result from a MITE insertion into the FAD2 gene [J]. Theor Appl Genet,2004,1088:1492-1502. [23] Yin D M,Deng S Z,Zhan K H,et al. High-oleic pea? nut oils produced by HpRNA-mediated gene silencing of oleate desaturase[J]. Plant Mol Biol Rep,2007,253/4: 154-163. [24] Wen S J,Liu H,Li X Y,et al. TALEN-mediated target? ed mutagenesis of fatty acid desaturase 2(FAD2)in pea? nut(Arachis hypogaea L.)promotes the accumulation of oleic acid[J]. Plant Mol Biol,2018,971/2:177-185. [25] Sogut T,Ozturk F,Kizil S. Effect of sowing time on pea? nut(Arachis hypogaea L.)cultivars:II. fatty acid compo? sition[J]. Agric Agric Sci Procedia,2016,10:76-82. [26] Chaiyadee S,Jogloy S,P Songsri P,et al. Soil moisture affects fatty acids and oil quality parameters in peanut [J]. Int J Plant Prod,2013,71:81-96. [27] Davis J P,Leek J M,Sweigart D S,et al. Measurements of oleic acid among individual kernels harvested from test plots of purified runner and spanish high oleic seed [J]. Peanut Sci,2017,442:134-142. [28] Sun M,Spears J F,Isleib T G,et al. Effect of produc? tion environment on seed quality of normal and high-ole? ate large seeded virginia-type peanut(Arachis hypogaea L.)[J]. Peanut Sci,2014,412:90-99. [29] Bhalani G K,Parameswaran M. Influence of differential irrigation on kernel lipid profile in goundnut[J]. Plant Physiol Biochem,1992,19:11-11. [30] Hashim I B,Koehler P E,Eitenmiller R R,et al. Fatty acid composition and tocopherol content of drought stressed Florunner peanuts[J]. Peanut Sci,1993,201: 21-24. [31] Singkham N,Jogloy S,Kesmala T,et al. Genotypic vari? 10 李丽等:高油酸花生遗传改良研究进展 ability and genotype by environment interactions in oil and fatty acids in high,intermediate,and low oleic acid peanut genotypes[J]. J Agric Food Chem,2010,5810: 6257-6263. [32] Sarvamangala C,Gowda M V C,Varshney R K. Identifi? cation of quantitative trait loci for protein content,oil content and oil quality for groundnut(Arachis hypogaea L.)[J]. Field Crop Res,2011,1221:49-59. [33] Pandey M K,Wang M L,Qiao L,et al. Identification of QTLs associated with oil content and mapping FAD2 genes and their relative contribution to oil quality in pea? nut(Arachis hypogaea L.)[J]. BMC Genet,2014,151: 133. [34] Zhang X,Zhu S,Zhang K,et al. Establishment and evaluation of a peanut association panel and analysis of key nutritional traits[J]. J Integrat Plant Biol,2018, 603:195-215. [35] Hu X H,Zhang S Z,Miao H R,et al. High-density ge? netic map construction and identification of QTLs con? trolling oleic and linoleic acid in peanut using SLAF-seq and SSRs[J]. Scientific Reports,2018,81:5479. [36] Shasidhar Y,Vishwakarma M K,Pandey M K,et al. Molecular mapping of oil content and fatty acids using dense genetic maps in groundnut(Arachis hypogaea L.) [J]. Front Plant Sci,2017,8:794. [37] Jung S,Powell G,Moore K,et al. The high oleate trait in the cultivated peanut(Arachis hypogaea L.). II. Mo? lecular basis and genetics of the trait[J]. Mol Gen Genet (MGG),2000,2635:806-811. [38] Chu Y,Ramos L,Holbrook C C,et al. Frequency of a loss-of-function mutation in oleoyl-PC desaturase(Ah? FAD2A)in the mini-core of the US peanut germplasm collection[J]. Crop Sci,2007,476:2372-2378. [39] Barkley N A,Chamberlin K D C,Wang M L,et al. De? velopment of a real-time PCR genotyping assay to identi? fy high oleic acid peanuts(Arachis hypogaea L.)[J]. Mol Breeding,2010,253:541-548. [40] Chen Z,Wang M L,Barkley N A,et al. A simple al? lele-specific PCR assay for detecting FAD2 alleles in both A and B genomes of the cultivated peanut for higholeate trait selection[J]. Plant Mol Biol Rep,2010, 283:542-548. [41] Yu H T,Yang W Q,Tang Y Y,et al. An AS-PCR as? say for accurate genotyping of FAD2A/FAD2B genes in peanuts(Arachis hypogaea L.)[J]. Grasas y Aceites, 2013,644:395-399. [42] Zhao S,Li A,Li C,et al. Development and application of KASP marker for high throughput detection of Ah? FAD2 mutation in peanut[J]. Electron J Biotechnol, 2017,25:9-12. [43] Wang C T,Yu S L,Zhang S W,et al. Novel protocol to identify true hybrids in normal oleate x high oleate cross? es in peanut[J]. Electron J Biotechnol,2010,135:18- 19. [44] 徐平丽,唐桂英,付春,等. 高通量检测花生油酸含量相关基因AhFAD2等位变异的方法[J]. 农业生物技术学报,2016,249:1364-1373. [45] 雷永,姜慧芳,文奇根,等. AhFAD2A 等位基因在中国花生小核心种质中的分布及其与种子油酸含量的相关性分析[J]. 作物学报,2010,3611:1864-1869. [46] Mukri G,Nadaf H L,Bhat R S,et al. Phenotypic and molecular dissection of ICRISAT mini core collection of peanut(Arachis hypogaea L.) for high oleic acid[J]. Plant Breeding,2012,1313:418-422. [47] Nawade B,Bosamia T C,Thankappan R,et al. Insights into the Indian peanut genotypes for AhFAD2 gene poly? morphism regulating its oleic and linoleic acid fluxes[J]. Front Plant Sci,2016,7:1271. [48] Singh A K. Putative genome donors of Arachis hypogaea Fabaceae,evidence from crosses with synthetic amphi? diploids[J]. Plant Syst Evol,,1988,1603-4:143-151. [49] Nawade B,Mishra G P,Radhakrishnan T,et al. High oleic peanut breeding: Achievements, perspectives, and prospects[J]. Trends Food Sci Technol,2018,78: 107-119. [50] Janila P,Pandey M K,Shasidhar Y,et al. Molecular breeding for introgression of fatty acid desaturase mutant alleles AhFAD2A and AhFAD2B)enhances oil quality in high and low oil containing peanut genotypes[J]. Plant Sci,2016,242:203-213. [51] 雷永. 花生高油酸的分子遗传机制及其高效遗传改良 体系构建[D]. 北京:中国农业科学院,2010. [52] 杨传得,关淑艳,唐月异,等. 花生单粒种子脂肪酸 含量的气谱快速无损测定[J]. 花生学报,2012 3:6. [53] Fox G,Cruickshank A. Near infrared reflectance as a rapid and inexpensive surrogate measure for fatty acid composition and oil content of peanuts(Arachis hypo? gaea L.)[J]. J Infrared Spectrosc,2005,135:287- 291. [54] 张建成,王传堂,王秀贞,等. 花生自然风干种子油酸、亚油酸和棕榈酸含量的近红外分析模型构建[J]. 中国农学通报,2011,273:90-93. [55] 周桂元,洪彦彬,林坤耀,等. 花生空间诱变及SSR标记遗传多态性分析[J]. 中国油料作物学报,2007, 293:238-241. [56] Wang C T,Wang X Z,Zhang S W,et al. Sodium azide mutagenesis resulted in a peanut plant with elevated ole? ate content[J]. Electro J Biotech,2011,142:10. 11 中国油料作物学报2019,41(6) [57] Mondal S,Badigannavar A M,d’Souza S F. Induced variability for fatty acid profile and molecular character? ization of high oleate mutant in cultivated groundnut Ara? chis hypogaea L.[J]. Plant breeding,2011,1302:242- 247. [58] Nadaf H L,Biradar K,Murthy G S S,et al. Novel muta? tions in oleoyl-PC desaturase AhFAD2B identified from new high oleic mutants induced by gamma rays in peanut [J]. Crop Sci,2017,575:2538-2546. [59] 许燕,张绍龙. 我国高油酸花生育种研究进展[J]. 广东农业科学,2011,38(1):43-45. [60] 姜慧芳,任小平,黄家权,等. 野生花生脂肪酸组成的遗传变异及远缘杂交创造高油酸低棕榈酸花生新种质[J]. 作物学报,2009,35(1):25-32. [61] 于明洋,孙明明,郭悦,等. 利用回交法快速选育高油酸花生新品系[J]. 作物学报,2017,436:855-861. [62] 张照华,王志慧,淮东欣,等. 利用回交和标记辅助选择快速培育高油酸花生品种及其评价[J]. 中国农业科学,2018,519:1641-1652. [63] Gorbet D W,Knauft D A. Registration of‘SunOleic 97R’Peanut[J]. Crop Sci,2000,404:1190. [64] 中国种业大数据平台:品种登记查询http:// 202.127.42.47:6010/index.aspx[OL]. [65] 王传堂. 花生遗传改良[M]. 上海:上海科学技术出版社,2017. [66] Tillman B L,Gorbet D W. Registration of‘FloRun ‘107’’Peanut[J]. J Plant Regist,2015,92:162. [67] Tillman B L,Gorbet D W. Registration of‘TUFRunner ‘511’’Peanut[J]. J Plant Regist,2017,113:235. [68] Tillman B L. Registration of‘TUFRunner‘297’’Peanut [J]. J Plant Regist,2018,121:31-34. [69] Brenneman T B. Registration of‘Georgia-14N’peanut [J]. J Plant Regist 2015,92:159-161. [70] Branch W D. Registration of‘Georgia-13M’Peanut[J]. J Plant Regist,2014,83:253. [71] Branch W D. Registration of‘Georgia-16HO’Peanut [J]. J Plant Regist,2017,133:231. [72] Chamberlin K D,Bennett R S,Damicone J P. Registra? tion of‘lariat’peanut[J]. J Plant Regist,2018,121: 36. [73] Chamberlin K D,Bennett R S,Damicone J P,et al. Registration of‘OLé’peanut[J]. J Plant Regist,2015, 92:154. [74] Chamberlin K D,Bennett R S,Damicone J P. Registra? tion of‘VENUS’peanut[J]. J Plant Regist,2017, 111:33. [75] Chamberlin K D,Damicone J P,Baring M R,et al. Reg? istration of high-oleic peanut germplasm line ARSOKS1( TX996784)with enhanced resistance to sclerotinia blight and pod rot[J]. J Plant Regist,2015,91:103. [76] http://www.nccrop.com/varieties.php/6/Peanut;%20Me? hl,%202017[OL]. [77] Puppala N,Tallury S P. Registration of‘NuMex 01’ high oleic valencia peanut[J]. J Plant Regist,2014, 82:127. [78] Burow M D,Baring M R,Puppala N,et al. Registration of‘schubert’peanut[J]. J Plant Regist,2014,82: 122. [79] Burow M D,Baring M R,Ayers J L,et al. Registration of‘Tamrun OL12’Peanut[J]. J Plant Regist,2014, 82:117. [80] Holbrook C C,Ozias-Akins P,Chu Y,et al. Registra? tion of‘TifNV-High O/L’Peanut[J]. J Plant Regist, 2017,113:228. [81] https://www. ars. usda. gov/research/publications/publica? tion/?seqNo115=342753[OL]. [82] 孟硕,李丽,何美敬,等. 高油酸花生(Arachis hypo? gaea L.)杂交后代AhFAD2B 基因的分子标记辅助选择 [J]. 植物遗传资源学报,2015,16(1):142-146. [83] 陈静,胡晓辉,石运庆,等. 花生品种间杂种F1代的 SSR标记分析[J]. 核农学报,2009,234:617-620. [84] Chu Y,Wu C L,Holbrook C C,et al. Marker-assisted selection to pyramid nematode resistance and the high oleic trait in peanut[J]. Plant Genome J,2011,42: 110-117. [85] Wang C T,Yu S L,Zhang S W,et al. Novel protocol to identify true hybrids in normal oleate × high oleate cross? es in peanut[J]. Electron J Biotechnol,2010,135:18- 19 [86] Mienie,M S C,Pretorius,et al. Application of markerassisted selection for AhFAD2A and AhFAD2B genes gov? erning the high-oleic acid trait in South African ground? nut cultivars(Arachis hypogaea L.)[J]. Afr J Biotech? nol,2013,1227:4283-4289. 12 |
[1] | WANG Lei, TAN Mei-lian , FU Chun-ling, WANG Wei, WANG Li-jun, YIN Zi-yan, YAN Xing-chu . Prediction of qualitative characteristics of sunflower husked seed by near infrared spectroscopy [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2020, 42(1): 147-. |
[2] | SUN Zhi-jun, CAI Ying-bo, LYU Hao, WANG Jie-qi, LIU Han-xi, WEN Ying-nan, LIU Chun-yan, WANG Jin-hui, XIN Da-wei , CHEN Qing-shan (. 3 QTLs analysis and gene mining of soybean symbiotic nodulation based on introgression lines [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2020, 42(1): 25-. |
[3] | LI Jian-yi, WANG Yue, XIN Da-wei, LI Rui-chao, YU Jing-yao, HUANG Shi-yu, WANG Xin-yu, WU Xiao-xia , CHEN Qing-shan . Optimization analysis of soybean nodule-related QTLs and candidate gene mining [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2020, 42(1): 37-. |
[4] | LI Can-dong, JIANG Hong-wei , GUO Tai , WANG Zhi-xin , ZHENG Wei , ZHANG Zhen-yu , ZHAO Haihong , WANG Nan-nan , CHEN Qing-shan. QTL mapping and interactive group validation for the number of four-seed-pod trait on soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2020, 42(1): 44-. |
[5] | LIU Ren-feng , HUANG Shi-yao , NIE Yong-peng , XU Sheng-yong. Automated detection research for number and key phenotypic parameters of rapeseed silique [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2020, 42(1): 71-. |
[6] | YU Er-ru, LI Hui-lin, YANG Hang, YANG Sheng-xian, FENG Bin, WEI Zhong-fen . Evaluation of main quality traits of local perilla resources in Guizhou [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2020, 42(1): 78-. |
[7] | XU Yao-zhao, SUN Wan-cang , FANG Yan, SUN Bo-lin . Matter transport, photosynthetic characteristics and fluorescence dynamics of 2 Brassica rapa cultivars with different freezing-tolerance in Northwest China [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2020, 42(1): 91-. |
[8] | MA Jia-bin , YU Xiao-bo , WU Hai-ying, ZHANG Ming-rong . Effects of inoculation of different rhizobium on photosynthetic characteristics and nitrogen fixation of soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2020, 42(1): 102-. |
[9] | YU Jing , WU Ju-xiang , XU Man-lin , ZHANG Xia , GUO Zhi-qing , CHEN Dian-xu , ZHANG Zhi-meng , LI Xin-guo , CHI Yu-cheng , WAN Shu-bo . Fungicides screening for management of Peanut pod rot caused by Pythium myriotylum [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2020, 42(1): 121-. |
[10] | TANG Jian-rong, LIU Yue-lian , WU Ling-ping, LU Jian-nong, YIN Xue-gui . Identification of pathogen causing castor seed bud rot [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2020, 42(1): 134-. |
[11] | LI Wen-bo, GAO Yu, CUI Juan, SHI Shu-sen . Effects of temperature on growth and population trend of Atractomorpha sinensis(I.Bolivar) [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2020, 42(1): 127-. |
[12] | WANG Zhao-zhao, , LU Feng-yin , ZHU Guang-cheng , YANG Hui , GUO Wen-ying , ZHAI Chen-lu , HAN Jun-hao , DONG Jun-hui , DONG Tie-you. Characteristics and energy consumption of microwave coupled with hot air drying process of peanut pods [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2020, 42(1): 140-. |
[13] | LU Hong-chen,WU Han-fei,WEN Jing,YI Bin,MA Chao-zhi,TU Jin-xing,FU Ting-dong,SHEN Jin-xiong* . Phenotypic characteristics and genetic analysis of multi-inflorescence trait in Brassica napus [J]. 中国油料作物学报, 2019, 41(6): 850-. |
[14] | ZHOU Xin,YAO Xuan,NIE Li-xuan,YI Zhi-jie,CIREN Zhuoma,YANG Te-wu* . Effects of several plant regulators on waterlogging tolerance of Brassica napus during radicle growth [J]. 中国油料作物学报, 2019, 41(6): 914-. |
[15] | CONG Ri-huan,ZHANG Zhi,LU Jian-wei* . Climate impacts on yield of winter oilseed rape in different growth regions of the Yangtze River Basin [J]. 中国油料作物学报, 2019, 41(6): 894-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||