[1]. Goff S A, Ricke D, Lan T H, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica)[J]. Science, 2002, 296(5565): 92-100
[2]. Wang X, Wang H, Wang J, et al. The genome of the mesopolyploid crop species Brassica rapa[J]. Nat Genet, 2011, 43(10): 1035-1039
[3]. Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature, 2000, 408(6814): 796-815
[4]. Liu S, Liu Y, Yang X, et al. The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes[J]. Nat Commun, 2014, 5: 3930
[5]. Bolle C, Schneider A, Leister D. Perspectives on systematic analyses of gene function in Arabidopsis thaliana: new tools, topics and trends[J]. Curr Genomics, 2011, 12(1): 1-14
[6]. Chang Y, Long T, Wu C. Effort and contribution of T-DNA insertion mutant library for rice functional genomics research in China:review and perspective[J]. J Plant Ecology, 2012, 54(12): 953-966
[7]. Wang N, Long T, Yao W, et al. Mutant resources for the functional analysis of the rice genome[J]. Mol plant, 2013, 6(3): 596-604
[8]. Kolesnik T, Szeverenyi I, Bachmann D, et al. Establishing an efficient Ac/Ds tagging system in rice: large-scale analysis of Ds flanking sequences[J]. Plant J, 2004, 37(2): 301-314
[9]. Piffanelli P, Droc G, Mieulet D, et al. Large-scale characterization of Tos17 insertion sites in a rice T-DNA mutant library[J]. Plant Mol Biol, 2007, 65(5): 587-601
[10]. Till B J, Cooper J, Tai T H, et al. Discovery of chemically induced mutations in rice by TILLING[J]. BMC Plant Biol, 2007, 7: 19
[11]. Ahn J H, Kim J, Yoo S J, et al. Isolation of 151 mutants that have developmental defects from T-DNA tagging[J]. Plant Cell Physiol, 2007, 48(1): 169-178
[12]. Wang M B, Masuta C, Smith N A, et al. RNA silencing and plant viral diseases[J]. Mol plant microbe interac, 2012, 25(10): 1275-1285
[13]. Axtell M J. Classification and comparison of small RNAs from plants[J]. Annu Rev Plant Biol, 2013, 64: 137-159
[14]. Jones-Rhoades M W, Bartel D P, Bartel B. MicroRNAS and their regulatory roles in plants[J]. Annu Rev Plant Biol, 2006, 57: 19-53
[15]. Chen S, Hofius D, Sonnewald U, et al. Temporal and spatial control of gene silencing in transgenic plants by inducible expression of double-stranded RNA[J]. Plant J, 2003, 36(5): 731-740
[16]. Guo H S, Fei J F, Xie Q, et al. A chemical-regulated inducible RNAi system in plants[J]. Plant J, 2003, 34(3): 383-392
[17]. Mohr S E, Perrimon N. RNAi screening: new approaches, understandings, and organisms[J]. Wiley Interdiscip Rev RNA, 2012, 3(2): 145-158
[18]. Shirane D, Sugao K, Namiki S, et al. Enzymatic production of RNAi libraries from cDNAs[J]. Nat Genet, 2004, 36(2): 190-196
[19]. Mao Y B, Cai W J, Wang J W, et al. Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol[J]. Nat Biotechnol, 2007, 25(11): 1307-1313
[20]. Wang M B, Waterhouse P M. Application of gene silencing in plants[J]. Curr Opin Plant Biol, 2002, 5(2): 146-150
[21]. Smith N A, Singh S P, Wang M B, et al. Total silencing by intron-spliced hairpin RNAs[J]. Nature, 2000, 407(6802): 319-320
[22]. Wang L, Zheng J, Luo Y, et al. Construction of a genomewide RNAi mutant library in rice. Plant Biotechnol J, 2013, 11(8): 997-1005
[23]. Wang L, Luo Y Z, Zhang L, et al. Rolling circle amplification-mediated hairpin RNA (RMHR) library construction in plants[J]. Nucleic Acids Res, 2008, 36(22): e149
[24]. Zhang F, Sun Y, Pei W, et al. Involvement of OsPht1;4 in phosphate acquisition and mobilization facilitates embryo development in rice[J]. Plant J, 2015, 82(4): 556-569
[25]. Chalhoub B, Denoeud F, Liu S, et al. Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome[J]. Science, 2014, 345(6199): 950-953
[26]. De Block M, De Brouwer D, Tenning P. Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo Genes in the transgenic plants[J]. Plant Physiol, 1989, 91(2): 694-701
[27]. Barnes W M. PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates[J]. Proc Natl Acad Sci U S A, 1994, 91(6): 2216-2220
[28]. Zeng X, Yan X, Yuan R, et al. Identification and analysis of MS5d: a gene that affects double-strand break (DSB) repair during meiosis I in Brassica napus microsporocytes[J]. Front Plant Sci, 2016, 7: 1966
[29]. Austin R S, Vidaurre D, Stamatiou G, et al. Next-generation mapping of Arabidopsis genes[J]. Plant J, 2011, 67(4): 715-725
[30]. Hirochika H, Guiderdoni E, An G, et al. Rice mutant resources for gene discovery[J]. Plant Mol Biol, 2004, 54(3): 325-334
[31]. Lizardi P M, Huang X, Zhu Z, et al. Mutation detection and single-molecule counting using isothermal rolling-circle amplification[J]. Nat Genet, 1998, 19(3): 225-232
[32]. Dean F B, Nelson J R, Giesler T L, Lasken R S. Rapid amplification of plasmid and phage DNA using Phi29 DNA polymerase and multiply-primed rolling circle amplification[J]. Genome Res, 2001, 11(6): 1095-1099
[33]. Wang L, Fan Y L. Rolling circle amplification-mediated hairpin RNA (RMHR) library construction in plants[J]. Nucl Acid Res, 2008, 36(22): e149-e149
[34]. Wesley S V, Helliwell C A, Smith N A, et al. Construct design for efficient, effective and high-throughput gene silencing in plants[J]. Plant J, 2001, 27(6): 581-590
[35]. Frser A G, Kamath R S, Zipperlen P, et al. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference[J]. Nature, 2000, 408(6810): 325-330
[36]. Kamath R S, Fraser A G, Dong Y, et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi[J]. Nature, 2003, 421(6920): 231-237
|