中国油料作物学报 ›› 2019, Vol. 41 ›› Issue (3): 421-.doi: 10.7505/j.issn.1007-9084.2019.03.015
Previous Articles Next Articles
Online:
2019-06-28
Published:
2019-09-02
LUO Yan-qing, WANG Yun-yue*, ZU Feng, FU Ming-lian, ZHAO Kai-qin, ZHANG Yun-yun, WANG Jing-qiao, TIAN Zheng-shu, CHEN Wei,LI Jin-feng, YUAN Xiao-yan, LI Gen-ze*. Transcriptome analysis of Brassica napus-Plasmodiophora brassicae interaction during early infection[J]. 中国油料作物学报, 2019, 41(3): 421-.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jouroilcrops.cn/EN/10.7505/j.issn.1007-9084.2019.03.015
[1] Dixon GR.The occurrence and economic impact Plasmodiophora Brassicae and clubroot disease[J]. J Plant Growth Regul ,2009,28:194-202. [2] Piao Z Y, Ramchiary N, Lim Y P. Genetics of clubroot resistance in Brassica species[J]. J Plant Growth Regul, 2009, 28(3): 252-264. [3] Schwelm A, Fogelqvist J, Knaust A, et al. The Plasmodiophora brassicae genome reveals insights in its life cycle and ancestry of chitin synthases[J]. Sci Rep, 2015, 5: 11153. [4] Burki F, Kudryavtsev A, Matz M V, et al. Evolution of Rhizaria: new insights from phylogenomic analysis of uncultivated protists[J]. BMC Evol Biol, 2010, 10(1): 377. [5] 王靖, 黄云, 胡晓玲, 等. 油菜根肿病症状、病原形态及产量损失研究[J]. 中国油料作物学报, 2008, 30(1): 112-115. [6] 季海雯, 任莉, 陈坤荣, 等. 油菜根肿病病原主要生理小种和品种抗病性鉴定[J]. 中国油料作物学报, 2013, 35(3): 301-306. [7] Kowata-Dresch L S, May-De Mio L L. Clubroot management of highly infested soils[J]. Crop Prot, 2012, 35: 47-52. [8] Donald C, Porter I. Integrated control of clubroot[J]. J Plant Growth Regul, 2009, 28(3): 289-303. [9] Feng J, Hwang S F, Strelkov S E. Studies into primary and secondary infection processes by Plasmodiophora brassicae on canola[J]. Plant Pathol, 2013, 62(1): 177-183. [10] Deora A, Gossen B D, McDonald M R. Infection and development of Plasmodiophora brassicae in resistant and susceptible canola cultivars[J]. Can J Plant Pathol, 2012, 34(2): 239-247. [11] Kageyama K, Asano T. Life cycle of Plasmodiophora brassicae[J]. J Plant Growth Regul, 2009, 28(3): 203-211. [12] Devos S, Vissenberg K, Verbelen J P, et al. Infection of Chinese cabbage by Plasmodiophora brassicae leads to a stimulation of plant growth: impacts on cell wall metabolism and hormone balance[J]. New Phytol, 2004, 166(1): 241-250. [13] Jones J D G, Dangl J L. The plant immune system[J]. Nature, 2006, 444(7117): 323-329. [14] Sun L Q, Zhu L F, Xu L, et al. Cotton cytochrome P450 CYP82D regulates systemic cell death by modulating the octadecanoid pathway[J]. Nat Commun, 2014, 5: 5372. [15] 陈英, 谭碧玥, 黄敏仁. 植物天然免疫系统研究进展[J]. 南京林业大学学报:自然科学版, 2012, 36(1): 129-136. [16] Zhao Y, Bi K, Gao Z X, et al. Transcriptome analysis of Arabidopsis thaliana in response to plasmodiophora brassicae during early infection[J]. Front Microbiol, 2017, 8: 673. [17] Chen J J, Pang W X, Chen B, et al. Transcriptome analysis of Brassica rapa near-isogenic lines carrying clubroot-resistant and –susceptible alleles in response to plasmodiophora brassicae during early infection[J]. Front Plant Sci, 2016, 6: 1183. [18] Siemens J, Keller I, Sarx J, et al. Transcriptome analysis ofArabidopsisClubroots indicate a key role for cytokinins in disease development[J]. Mol Plant - Microbe Interactions, 2006, 19(5): 480-494. [19] Schuller A, Kehr J, Ludwig-Müller J. Laser microdissection coupled to transcriptional profiling of Arabidopsis roots inoculated by Plasmodiophora brassicae indicates a role for brassinosteroids in clubroot formation[J]. Plant Cell Physiol, 2014, 55(2): 392-411. [20] Agarwal A, Kaul V, Faggian R, et al. Analysis of global host gene expression during the primary phase of the Arabidopsis thaliana–Plasmodiophora brassicae interaction[J]. Funct Plant Biol, 2011, 38(6): 462. [21] Jubault M, Hamon C, Gravot A, et al. Differential regulation of root arginine catabolism and polyamine metabolism in clubroot-susceptible and partially resistant Arabidopsis genotypes[J]. Plant Physiol, 2008, 146(4): 2008-2019. [22] Chu M G, Song T, Falk K C, et al. Fine mapping of Rcr1 and analyses of its effect on transcriptome patterns during infection by Plasmodiophora brassicae[J]. Bmc Genom, 2014, 15(1): 1166. [23] 战宗祥, 江莹芬, 朱紫媛, 等. 与位点PbBa8.1紧密连锁分子标记的开发及甘蓝型油菜根肿病抗性育种[J]. 中国油料作物学报, 2015, 37(6): 766-771. [24] Chen J J, Jing J, Zhan Z X, et al. Identification of novel QTLs for isolate-specific partial resistance to plasmodiophora brassicae in Brassica rapa[J]. Plos One, 2013, 8(12): e85307. DOI:10.1371/journal.pone.0085307. [25] 杨佩文, 李家瑞, 杨勤忠, 等. 十字花科蔬菜根肿病菌休眠孢子的分离与检测[J]. 云南农业大学学报, 2002, 17(3): 301-302, 306. [26] Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biol, 2014, 15(12): 550. [27] Ashburner M, Ball C A, Blake J A, et al. Gene Ontology: tool for the unification of biology[J]. Nat Genet, 2000, 25(1): 25-29. [28] The Gene Ontology Consortium. Expansion of the gene ontology knowledgebase and resources [J]. Nucleic Acids Research,2017,45:331-338. [29] Kanehisa M. The KEGG resource for deciphering the genome[J]. Nucleic Acids Res, 2004, 32(90001): 277D-280. [30] Chen C, Xia R, Chen H, et al. TBtools, a Toolkit for biologists integrating various HTS-data handling tools with a user-friendly interface[J]. bioRxiv, 2018: 289660. [31] Cao T S, Srivastava S, Rahman M H, et al. Proteome-level changes in the roots of Brassica napus as a result of Plasmodiophora brassicae infection[J]. Plant Sci, 2008, 174(1): 97-115. [32] Hatakeyama K, Suwabe K, Tomita R N, et al. Identification and characterization of Crr1a, a gene for resistance to clubroot disease (Plasmodiophora brassicae Woronin) in Brassica rapa L[J]. Plos One, 2013, 8(1): e54745. DOI:10.1371/journal.pone.0054745. [33] Zhang T, Zhao Z, Zhang C Y, et al. Fine genetic and physical mapping of the CRb gene conferring resistance to clubroot disease in Brassica rapa[J]. Mol Breeding, 2014, 34(3): 1173-1183. [34] Monaghan J, Zipfel C. Plant pattern recognition receptor complexes at the plasma membrane[J]. Curr Opin Plant Biol, 2012, 15(4): 349-357. [35] Li C Y, Deng G M, Yang J, et al. Transcriptome profiling of resistant and susceptible Cavendish banana roots following inoculation with Fusarium oxysporum f. sp. cubense tropical race 4[J]. Bmc Genom, 2012, 13(1): 374. [36] 糜艳霞, 任慧, 张常, 等. 几丁质酶的研究进展[J]. 生命科学研究, 2015, 19(5): 437-443. [37] 田义, 康国栋, 张彩霞, 等. 几丁质触发植物免疫的研究现状与展望[J]. 中国农业科学, 2013, 46(15): 3115-3124. [38] 范伟, 李雪姣, 关明俐, 等. 水稻几丁质酶基因的转录与表达特征[J]. 作物学报, 2014, 40(4): 571-580. [39] 张志忠, 吴菁华, 吕柳新, 等. 植物几丁质酶及其应用研究进展[J]. 福建农业大学学报, 2005, 34(4): 494-499. [39] 张志忠, 吴菁华, 吕柳新, 等. 植物几丁质酶及其应用研究进展[J]. 福建农林大学学报:自然科学版, 2005, 34(4): 494-499. [40] 贾翠玲, 侯和胜. 植物WRKY转录因子的结构特点及其在植物防卫反应中的作用[J]. 天津农业科学, 2010, 16(2): 21-26. [41] 陈思雀, 翁群清, 曹红瑞, 等. WRKY转录因子在生物和非生物胁迫中的功能和调控机理的研究进展[J]. 农业生物技术学报, 2017, 25(4): 668-682. [42] Deslandes L, Olivier J, Theulieres F, et al. Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes[J]. Proc Natl Acad Sci, 2002, 99(4): 2404-2409. [43] Knoth C, Ringler J, Dangl J L, et al. ArabidopsisWRKY70 is required for FullRPP4-mediated disease resistance and basal defense Against Hyaloperonospora parasitica[J]. Mol Plant - Microbe Interactions, 2007, 20(2): 120-128. [44] Kim K C, Fan B, Chen Z. Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae[J]. Plant Physiol, 2006, 142(3): 1180-1192. [45] Eulgem T, Somssich I E. Networks of WRKY transcription factors in defense signaling[J]. Curr Opin Plant Biol, 2007, 10(4): 366-371. [46] 房卫平, 谢德意, 李志芳, 等. NBS-LRR类抗病蛋白介导的植物抗病应答分子机制[J]. 分子植物育种, 2015, 13(2): 469-474. [47] Zhang X L, Liu Y M, Fang Z Y, et al. Comparative transcriptome analysis between broccoli (Brassica oleracea var. italica) and wild cabbage (Brassica macrocarpa Guss.) in response to plasmodiophora brassicae during different infection stages[J]. Front Plant Sci, 2016, 7: 1929. [48] Irani S, Trost B, Waldner M, et al. Transcriptome analysis of response to Plasmodiophora brassicae infection in the Arabidopsis shoot and root[J]. Bmc Genom, 2018, 19: 23. [49] Glazebrook J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens[J]. Annu Rev Phytopathol, 2005, 43(1): 205-227. |
[1] | ZHOU Xin,YAO Xuan,NIE Li-xuan,YI Zhi-jie,CIREN Zhuoma,YANG Te-wu* . Effects of several plant regulators on waterlogging tolerance of Brassica napus during radicle growth [J]. 中国油料作物学报, 2019, 41(6): 914-. |
[2] | CONG Ri-huan,ZHANG Zhi,LU Jian-wei* . Climate impacts on yield of winter oilseed rape in different growth regions of the Yangtze River Basin [J]. 中国油料作物学报, 2019, 41(6): 894-. |
[3] | FENG Tao,TAN Hui,XU Jiang-lin,GUAN Chun-yun* . Epibrassinolide regulation on oilseed rape (Brassica napus L.) in different period [J]. 中国油料作物学报, 2019, 41(6): 904-. |
[4] | LIANG Li-ni,GUO Xiao-guang,LIAO Xing,QIN Lu*,LIAO Hong* . Screening and preliminary application of rapeseed materials as green manure intercropped in tea plantations [J]. 中国油料作物学报, 2019, 41(6): 825-. |
[5] | XU Yue-qing,WANG Dan-dan,YANG Rui-nan,QI Xin,MA Fei,WANG Xiu-pin,ZHANG Qi,ZHANG Liang-xiao*,LI Pei-wu . Extraction and determination of trans-vitamin K1 in Brassica napus bolt by SPE-HPLC-MS/MS [J]. 中国油料作物学报, 2019, 41(6): 842-. |
[6] | LU Hong-chen,WU Han-fei,WEN Jing,YI Bin,MA Chao-zhi,TU Jin-xing,FU Ting-dong,SHEN Jin-xiong* . Phenotypic characteristics and genetic analysis of multi-inflorescence trait in Brassica napus [J]. 中国油料作物学报, 2019, 41(6): 850-. |
[7] | FENG Shu-yan,CHEN Hui-long,LI Qiang,WANG Li-xia,ZHANG Wei-meng,WANG Tong,CUI Chun-lin,LI Miao-miao,YU Ying,NIE Fu-lei*,SONG Xiao-ming* . Identification and codon bias of NBS-LRR gene family in Brassica napus [J]. 中国油料作物学报, 2019, 41(6): 858-. |
[8] | WEI Ya-qi,WEI Wen-liang,LIU Dao-min,ZHANG Jiang-jiang,ZHAN Jie-peng,SHI Jia-qin*, WANG Xin-fa,LIU Gui-hua . QTL mapping and candidate genes analysis for flowering time in rapeseed (Brassica napus L.) [J]. 中国油料作物学报, 2019, 41(5): 679-. |
[9] | LI Rong,LIN Chun-jing,PENG Bao,DING Xiao-yang,LI Yong-kuan,ZHAO Guo-long, ZHAO Li-mei1*,ZHANG Chun-bao1* . Transcriptomic analysis of soybean cytoplasmic male sterile lines with different outcrossing rate [J]. 中国油料作物学报, 2019, 41(5): 696-. |
[10] | WANG Jian-qiang,HAN Pei-pei,LI Yin-shui,LIAO Xing,QIN Lu* . Difference in root morphology and nutrient accumulation of rapeseed (Brassica napus L.) with contrasting N efficiency [J]. 中国油料作物学报, 2019, 41(5): 758-. |
[11] | CAI Xin, CHENG Hong-tao, LU Guang-yuan, MEI De-sheng, SANG Shi-fei, FU Li, WANG Hui, CHU Wen, DING Bing-li, WANG Wen-xiang, HU Qiong* . Genetic analysis of seed vigor in a doubled haploid population of Brassica napus L. [J]. 中国油料作物学报, 2019, 41(5): 670-. |
[12] | ZHU Cheng,HUANG Tao-cui,TANG Shi-yi,LIU Xi-zhong,HU Cheng-wei . Physiology and biochemistry on silique shattering resistance in Brassica napus L. [J]. 中国油料作物学报, 2019, 41(5): 735-. |
[13] | YUAN Shu-pei,ZHANG Fu-gui,HUANG Qian,CHENG Xi,GAO Gui-zhen,WU Xiao-ming*. Bioinformatics of COR413 family genes in Brassica napus and its diploid ancestral species [J]. 中国油料作物学报, 2019, 41(4): 507-. |
[14] | HUANGRong,HUJian-kun,HUANGRui-rong*,HUAJu-lin,TANGen-jia,DINGYun-hua,LIUFu-xiang. Race identification of Plasmodiophora brassicae and resistance of rape varieties in Jiangxi Province [J]. 中国油料作物学报, 2019, 41(4): 604-. |
[15] | HAN Pei-pei,HU Xiao-jia,LIAO Xiang-sheng,XIE Li-hua,LI Yin-shui,GU Chi-ming,QIN Lu*,LIAO Xing . Effects of flowering rapeseed-manure returns on soil microorganism and growth of peanut [J]. 中国油料作物学报, 2019, 41(4): 638-. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||