CHINESE JOURNAL OF OIL CROP SCIENCES ›› 2022, Vol. 44 ›› Issue (5): 1006-1017.doi: 10.19802/j.issn.1007-9084.2021253
Su-qi JIAO(), Jun-ming ZHOU, Yu-qing SHANG, Jia-xin WANG, Ai-jing ZHANG, Hao-bo HE, Qiu-zhu ZHAO, Yue LI, Dan YAO(
)
Received:
2021-10-05
Online:
2022-10-25
Published:
2022-10-31
Contact:
Dan YAO
E-mail:asu0106@163.com;dyao@jlau.edu.cn
CLC Number:
Su-qi JIAO, Jun-ming ZHOU, Yu-qing SHANG, Jia-xin WANG, Ai-jing ZHANG, Hao-bo HE, Qiu-zhu ZHAO, Yue LI, Dan YAO. Cloning and genetic transformation of soybean fatty acid dehydrogenase GmFAD3C-1 gene[J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(5): 1006-1017.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.jouroilcrops.cn/EN/10.19802/j.issn.1007-9084.2021253
Table 1
PCR Primer sequence
名称 Name | 引物序列(5’→3’) Sequence (5’→3’) |
---|---|
FAD3A sense primer FAD3A anti sense primer FAD3B sense primer FAD3B anti sense primer FAD3C sense primer FAD3C anti sense primer FAD3C-1 sense primer FAD3C-1 anti sense primer CDSFAD3C-1 s CDSYEFAD3C-1 as CEⅡFAD3C-1F CEⅡFAD3C-1R 3C-19bp-s 3C-19bp-as 35SF 35SR BarF BarR ACT-s ACT-as | GCAATGGTTAAAGCACAAAGCCT ATTGAAACTCAGTCTCGGTGCG AAGCCTTTAGCCTATGCCGCCA TTGCGAGTGGAGGAGCAGAGAA TCAAGCACAGCCTCTACAA AAAAAAAGAAAGGAACAAT ACCATCTGCTCTACACTCA GCTCACGATAATACTTTCC GGAATTCCTCAAGCACAGCCTCTACAACTCGAGAT GCCTTAAGCAAAAAAAGAAAGGAACAATGAGCTCTA CATGATGATGCAAGTACGT TCCTGGTGAGAGAAGAGAT TAGAGGACCTAACAGAAC CCGTGTTCTCTCCAAATG CACCATCGTCAACCACTACATCG TGAAGTCCAGCTGCCAGAAAC TGGTGAGTCCTGTGGCTAAT TTGAACAGCATTGTGGGC |
Fig. 5
PCR result of recombinant plasmid bacterial solutionNote: M: DL10000Marker;W: Negative control;A: Extraction of total soybean RNA;B: Full-length cDNA sequence of GmFAD3C-1 gene;C: PCR detection of overexpression vector bacterial solution;D: PCR detection of editing vector bacteria;E: schematic diagram of editing vector construction
Fig. 6
PCR detection of some transgenic plantsNote: M: DL10000Marker; -: negative control;+: positive control, Figure;A: T1 generation 35s detection 1-3: JN18OET1 4-6: MT72OET1, Figure;B: T2 generation 35s detection 1-3: JN18OET2 4-6: MT72OET2, Figure;C: T1 generation Bar detection 1-3: JN18OET1 4-7: MT72OET1, Figure;D: T2 generation Bar detection 1-3: JN18OET2 4-6: MT72OET2, Figure;E: T1 generation Cas9 detection 1-2: JN18CRT1 3-5: MT72CRT1, Figure;F: T2 generation Cas9 detection 1-2: JN18CRT2 3-5: MT72CRT2
Fig. 7
Analysis of sgRNA mutation types in transgenic plantsNote: A: M: DL2000 Marker W: Negative control -: Untransformed plants +: Positive control 1-2: JN18CRT1 3-5: MT72CRT1 Figure;B: Sequence alignment of sgRNA mutation sites in some transgenic plants Figure;C: Partial sgRNA in transgenic plants Alignment of amino acid sequence of mutation site;D: Prediction of three-dimensional structure of some proteins
Fig. 10
Determination of enzyme activity in grains of T2 transgenic linesNote: A: standard curve; B: determination of enzyme activity in the seed of transgenic plant line; 1 enzyme unit (U) means the amount of enzyme which can transfor 1 μmol base in 1 min. U/mg refers to the number of U per mg of fatty acid dehydrogenase
1 | 周延清, 田苗苗, 王芳, 等. 大豆脂肪酸脱饱和酶反义基因转化根癌农杆菌研究[J]. 华北农学报, 2011, 26(2): 23-25. |
2 |
Do P T, Nguyen C X, Bui H T, et al. Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2-1A and GmFAD2-1B genes to yield a high oleic, low linoleic and α-linolenic acid phenotype in soybean[J]. BMC Plant Biol, 2019, 19(1): 311. DOI:10.1186/s12870-019-1906-8 .
doi: 10.1186/s12870-019-1906-8 |
3 | 邢家宁. 植物化学与分子生物学的研究[J]. 青年与社会, 2019(6): 177. |
4 |
于海彦, 周志峰, 贾俊强, 等. 家蚕类ω3-脂肪酸脱氢酶基因的克隆、表达及功能研究[J]. 蚕业科学, 2017, 43(4): 577-586. DOI:10.13441/j.cnki.cykx.2017.04.006 .
doi: 10.13441/j.cnki.cykx.2017.04.006 |
5 | 王卓. 不同发育阶段胡麻脂肪酸合成相关基因的转录表达研究[D]. 呼和浩特: 内蒙古农业大学, 2019. |
6 |
Anai T, Yamada T, Kinoshita T, et al. Identification of corresponding genes for three low-α-linolenic acid mutants and elucidation of their contribution to fatty acid biosynthesis in soybean seed[J]. Plant Sci, 2005, 168(6): 1615-1623. DOI:10.1016/j.plantsci.2005.02.016 .
doi: 10.1016/j.plantsci.2005.02.016 |
7 |
Bilyeu K, Gillman J D, LeRoy A R. Novel FAD3 mutant allele combinations produce soybeans containing 1% linolenic acid in the seed oil[J]. Crop Sci, 2011, 51(1): 259-264. DOI:10.2135/cropsci2010.01.0044 .
doi: 10.2135/cropsci2010.01.0044 |
8 |
Bilyeu K, Palavalli L, Sleper D A, et al. Molecular genetic resources for development of 1% linolenic acid soybeans[J]. Crop Sci, 2006, 46(5): 1913-1918. DOI:10.2135/cropsci2005.11-0426 .
doi: 10.2135/cropsci2005.11-0426 |
9 |
Wu B, Ruan C J, Han P, et al. Comparative transcriptomic analysis of high- and low-oil Camellia oleifera reveals a coordinated mechanism for the regulation of upstream and downstream multigenes for high oleic acid accumulation[J]. 3 Biotech, 2019, 9(7): 257. DOI:10.1007/s13205-019-1792-7 .
doi: 10.1007/s13205-019-1792-7 |
10 |
Hong M J, Jang Y E, Kim D G, et al. Selection of mutants with high linolenic acid contents and characterization of fatty acid desaturase 2 and 3 genes during seed development in soybean (Glycine max)[J]. J Sci Food Agric, 2019, 99(12): 5384-5391. DOI:10.1002/jsfa.9798 .
doi: 10.1002/jsfa.9798 |
11 |
Islam N, Bates P D, Maria John K M, et al. Quantitative proteomic analysis of low linolenic acid transgenic soybean reveals perturbations of fatty acid metabolic pathways[J]. Proteomics, 2019, 19(7): e1800379. DOI:10.1002/pmic.201800379 .
doi: 10.1002/pmic.201800379 |
12 |
Liu J Y, Li P, Zhang Y W, et al. Three-dimensional genetic networks among seed oil-related traits, metabolites and genes reveal the genetic foundations of oil synthesis in soybean[J]. Plant J, 2020, 103(3): 1103-1124. DOI:10.1111/tpj.14788 .
doi: 10.1111/tpj.14788 |
13 |
Pham A T, Lee J D, Shannon J G, et al. Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait[J]. BMC Plant Biol, 2010, 10: 195. DOI:10.1186/1471-2229-10-195 .
doi: 10.1186/1471-2229-10-195 |
14 |
Liu J Y, Li P, Zhang Y W, et al. Three-dimensional genetic networks among seed oil-related traits, metabolites and genes reveal the genetic foundations of oil synthesis in soybean[J]. Plant J, 2020, 103(3): 1103-1124. DOI:10.1111/tpj.14788 .
doi: 10.1111/tpj.14788 |
15 |
Wu N, Lu Q, Wang P W, et al. Construction and analysis of GmFAD2-1A and GmFAD2-2A soybean fatty acid desaturase mutants based on CRISPR/Cas9 technology[J]. Int J Mol Sci, 2020, 21(3): 1104. DOI:10.3390/ijms21031104 .
doi: 10.3390/ijms21031104 |
16 |
Manan S, Zhao J. Role of Glycine max ABSCISIC ACID INSENSITIVE 3 (GmABI3) in lipid biosynthesis and stress tolerance in soybean[J]. Funct Plant Biol, 2021, 48(2): 171-179. DOI:10.1071/FP19260 .
doi: 10.1071/FP19260 |
17 |
Wang M L, Gao L X, Li G Y, et al. Interspecific variation in the unsaturation level of seed oils were associated with the expression pattern shifts of duplicated desaturase genes and the potential role of other regulatory genes[J]. Front Plant Sci, 2020, 11: 616338. DOI:10.3389/fpls.2020.616338 .
doi: 10.3389/fpls.2020.616338 |
18 |
孟祥鹏, 宋阳, 金羽琨, 等. 转hrpZPsta大豆株系对灰斑病的抗病性鉴定[J]. 吉林农业大学学报, 2020, 42(5): 502-509. DOI:10.13327/j.jjlau.2020.4273 .
doi: 10.13327/j.jjlau.2020.4273 |
19 |
李文滨, 冯雷, 宋伟, 等. 大豆脂肪酸含量积累动态及亚麻酸代谢候选基因筛选[J]. 东北农业大学学报, 2017, 48(11): 1-8. DOI:10.19720/j.cnki.issn.1005-9369.2017.11.001 .
doi: 10.19720/j.cnki.issn.1005-9369.2017.11.001 |
20 |
Hoshino T, Takagi Y, Anai T. Novel GmFAD2-1b mutant alleles created by reverse genetics induce marked elevation of oleic acid content in soybean seeds in combination with GmFAD2-1a mutant alleles[J]. Breed Sci, 2010, 60(4): 419-425. DOI:10.1270/jsbbs.60.419 .
doi: 10.1270/jsbbs.60.419 |
21 |
赵训超, 魏玉磊, 丁冬, 等. 甜荞麦脂肪酸脱氢酶基因(FeFAD)家族的鉴定与分析[J]. 东北农业科学, 2021, 46(1): 36-41. DOI:10.16423/j.cnki.1003-8701.2021.01.010 .
doi: 10.16423/j.cnki.1003-8701.2021.01.010 |
22 |
刘明, 杨君, 安利佳. 花粉管通道法转化影响因素的分析[J]. 安徽农业科学, 2007, 35(12): 3483, 3523. DOI:10.13989/j.cnki.0517-6611.2007.12.016 .
doi: 10.13989/j.cnki.0517-6611.2007.12.016 |
[1] | Yao XU, Su-feng LENG, Yu-ming ZHANG, Jin-hua SONG, Ke ZHAO. Evolution analysis of main agronomic traits, yield, quality and resistance of soybean varieties released in Jiangsu Province from 1982 to 2021 [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 780-789. |
[2] | Sha-sha CAO, Nan WU, Li-ping WANG, Xiao-yu LIU, Wei-qi WANG, Gui-feng ZHANG, Fa-wei WANG, Xiao-wei LI. Cloning, bioinformatics analysis and function identification of two soybean ERD15 genes [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 790-797. |
[3] | Yue ZHANG, Jia-qi WANG, Zi-jian YU, Qiang XU, Lan ZHANG, Yu-xin PAN. Bioinformatics analysis of MIKC-type MADS-box gene family in legumes [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 798-809. |
[4] | Qiu-sen CHEN, Feng-qiong CHEN, Han-lin LIU, Pei-yu CHU, Hua-mei WANG, Chun-yuan REN, Qiang ZHAO, Liang CAO, Gao-bo YU, Yu-xian ZHANG. Effect of exogenous melatonin on degradation of chlorothalonil and carbendazim residues in vegetable soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(4): 893-900. |
[5] | Jing-hui WANG, Yang LIU, Qi-you ZHENG, Xiao-tang CHENG, Chao-hui WANG. Identification of soybean producing area in North China based on multi-element and fatty acid fingerprint characteristics [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 532-538. |
[6] | Yue-li YUAN, Yuan-yuan YI, Yong ZHAN, Li-miao CHEN, Song-li YUAN, Yi HUANG, Zhi-yuan XIAO, Chan-juan ZHANG, Xin-an ZHOU. Distinguishing and evaluating high nitrogen-use-efficient soybean germplasm at seedling stage [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 539-547. |
[7] | Wei LIU, Yu-bin WANG, Wei LI, Li-feng ZHANG, Cai-jie WANG, Ran XU, Hai-ying DAI, Yan-wei ZHANG. QTL mapping and candidate genes identification for flowering time of soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 548-554. |
[8] | Jian-qiu LIANG, Xiao-bo YU, Jian-gang AN, Zhao-qiong ZENG, Hai-ying WU, Ming-rong ZHANG. Maturity group classification of soybean varieties (lines) in the national trials [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 555-561. |
[9] | Yu-jia TAO, Lei LI, Zong-liang REN, Cheng LU, Qing-tao GONG, Xing-hua XING, Hai-dong JIANG. Regulation of signaling of H2O2 homeostasis under mild drought on drought resistance of soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 602-609. |
[10] | Qing-nan HAO, Fang YANG, Ai-ai WANG, Ze-fu LONG, Zhong-lu YANG, Hai-feng CHEN, Zhi-hui SHAN, Jun-bo DENG, Xin-an ZHOU. Effects of nitrogen fertilizer and sodium nitratol on photosynthetic characteristics and yield quality in southern soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 610-620. |
[11] | Mei-ling LIU, Nai-jie FENG, Dian-feng ZHENG, Sheng-jie FENG, Shi-ya WANG, Hong-tao XIANG. Effects of potassium indole butyrate on root morphogenesis and physiological metabolism of soybean under different soil water conditions [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 621-631. |
[12] | Kai LU, Jun-shan QI, Kai QI, Li-guo MA, Yue-li ZHANG, Bo ZHANG, Guo-ping MA, Chang-song LI. Pathogen identification of Pythium root rot disease on soybean [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(3): 652-658. |
[13] | Lu-lu LIU, Jian-fei LI, Yue SHU, xiao-yang CHEN, Gui-xiang TANG. Current situation of soybean production and consumption in China and strategies to improve self-sufficiency rate [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(2): 242-248. |
[14] | Lu HAN, Ke-xin QU, Yong-fu FU, Qing-shan CHEN, Xiao-xia WU, Xiao-mei ZHANG. A study on the function of GmWUS2 gene regulating the number of soybean nodules [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(2): 289-297. |
[15] | Hong-chang JIA, De-zhi HAN, Hong-rui YAN, Lei ZHANG, Ji-li LIANG, Xiao-fei YAN, Hai-fang ZHU, Wen-cheng LU. Comparative study on identification methods of soybean maturity group [J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2022, 44(2): 307-315. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||