Response of nodulation and nitrogen fixation and grain yield and quality of high oil soybean to nitrogen fertilizer

Shi ZOU, Jun YAN, Rui-min GAO, Wen-xiu ZOU, Xin-chun LU, Xu CHEN

CHINESE JOURNAL OF OIL CROP SCIENCES ›› 2023, Vol. 45 ›› Issue (4) : 836-844.

PDF(3387 KB)
Welcome to CHINESE JOURNAL OF OIL CROP SCIENCES, Jul. 11, 2025
PDF(3387 KB)
CHINESE JOURNAL OF OIL CROP SCIENCES ›› 2023, Vol. 45 ›› Issue (4) : 836-844. DOI: 10.19802/j.issn.1007-9084.2022185

Response of nodulation and nitrogen fixation and grain yield and quality of high oil soybean to nitrogen fertilizer

Author information +
History +

HeighLight

A reasonable nitrogen (N) application method could improve nodulation and N2 fixation, and reduce agricultural pollution and improve production efficiency under the premise of high yield and quality of soybeans. The effects of different N application rate and time on biomass, N2 fixation, ureide, yield, fat and isoflavone content of soybean, and the relationships among them were studied in present study, then to provide a theoretical and scientific basis for high-yield and high-quality soybean in this area. A pot experiment was conducted to study the effects of N application rates with 0 (CK), 5 mg N/kg soil (LN) and 100 mg N/kg soil (HN) at V2 (two trifoliolates) or R1 (beginning bloom) stages on growth, nitrogenase activity and ureide content at R2 (full bloom) and R5 (beginning seed) stages. The yield, fat and isoflavone of soybean seeds were determined at R8 (full maturity) as well. The N application rate and time had significant effects on nodulation and nitrogenase activity of soybean. With increasing N application rate, the nodule dry weight and number were decreased. Compared with the CK treatment, the nodule number and dry weight decreased by 69.6% and 88.4% under HN with R1 treatment at the R2 stage, respectively. In contrast, the highest nitrogenase activity and ureide content were observed under LN treatment. Compared to the CK treatment, the nitrogenase activity under LN with V2 treatment increased by 28.5% and 18.2% at the R2 and R5 stage. Soybean grain yield and fat content were the highest in LN treatment, while isoflavone content was the highest in CK treatment; The grain fat content of LN treatment increased by 1.7%-2.0% compared with CK treatment, and the isoflavone content of HN treatment decreased by 5.2%-11.2% compared with CK treatment. The structural equation model indicated that N application negatively regulated fat content and indirectly affected soybean yield; Negatively regulate the number of nodules and indirectly affect the content of isoflavones in soybean. In general, the N application at V2 stage was more beneficial to soybean yield and nitrogen fixation, while the N application at R1 stage was more beneficial to soybean grain fat content. The reasonable amount of N application should be controlled at 5 mg N/kg soil.

Cite this article

Download Citations
Shi ZOU , Jun YAN , Rui-min GAO , Wen-xiu ZOU , Xin-chun LU , Xu CHEN. Response of nodulation and nitrogen fixation and grain yield and quality of high oil soybean to nitrogen fertilizer[J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2023, 45(4): 836-844 https://doi.org/10.19802/j.issn.1007-9084.2022185
随着育种方法和农艺管理措施不断改进,大豆的产量潜力也在逐渐提高[1]。大豆通过生物固氮和土壤矿化氮是否足以维持大豆氮素吸收和满足大豆对氮的需求是当前研究的热点问题[2]。Ignacio等[3]指出当植物N含量高于370 kg N/hm2后,作物氮素吸收和固定氮素供应之间的差值(N-gap)增加得更快,表明大豆需要额外的氮来应对产量潜力的提升,而缩小N-gap最为有效的策略是施用氮肥。然而不合理的施用氮肥会抑制大豆结瘤和固氮,对大豆产量、脂肪和异黄酮含量亦会产生不利影响,因此在生产上需要协调好氮肥-结瘤固氮-产质量之间的关系[4, 5]
大豆是需氮量较高的作物[6]。大豆出苗时根系吸收能力较弱,且此时正值根瘤自身形成发育阶段,该阶段补充氮素能提高大豆产量[7, 8]。McCoy等[9]等研究发现,与不施氮相比,V4期(主茎第4节复叶全展期)施氮肥根瘤数量减少52%。Zuffo等[10]研究表明出苗后30 d施氮肥对大豆根瘤的形成的抑制作用显著高于种肥和出苗后50 d施氮肥处理。Gan等[11]研究表明,在V2和R1期施氮肥显著提高了大豆总生物量和籽粒产量,而在R3或R5期施氮对大豆产量无显著的促进作用。此外Gai等[12]在黑土上的研究表明,与不施氮处理相比,施50 kg N/hm2基肥对大豆产量增加显著。充足的基肥或种肥有利于大豆产量的提升,同时也有利于籽粒脂肪含量提高,而在大豆生长发育后期施用氮肥则显著降低了大豆脂肪含量[13]。Larry[14]等表明在V2和R6期(鼓粒盛期)施112 kg N/hm2,大豆籽粒蛋白质含量降低而脂肪含量增加。Vamerali等[15]研究表明,R1和R3期(始荚期)施氮均降低大豆籽粒的异黄酮含量。而Kim等[16]研究发现,施氮对异黄酮含量无显著影响。可见氮肥施用时期和施用量对于大豆结瘤固氮和产质量具有显著的影响。然而有关不同氮肥施用时期和施用量下大豆结瘤、固氮和产质量之间的内在关系研究目前还较少。
高油大豆是脂肪含量不低于20%的大豆品种,随着人们生活水平的提高,高油大豆的需求量与日剧增,有关氮肥对高油大豆产量和品质的研究较多[17],而在高肥力黑土上研究高油大豆结瘤固氮及籽粒产质量对氮肥响应及其相互关系还较少。因此选择在大豆结瘤和固氮的关键生育时期,即V2期和R1期(最佳氮肥施用时期)施用不同量的氮肥,研究对高油大豆结瘤固氮、产量、籽粒脂肪和异黄酮含量的影响以及它们之间的内在相互关系,为调控氮肥施用,提高高油大豆籽粒产量和品质提供理论支撑。

1 材料与方法

1.1 供试材料及试验设计

供试土壤为黑土,土壤有机碳含量38.6 g/kg,全氮含量2.96 g/kg,碱解氮含量192.2 mg/kg,全磷含量0.7 g/kg,速效磷含量34.2 mg/kg,全钾含量23.7 g/kg,速效钾含量130.7 mg/kg。供试大豆为高油品种黑农87(脂肪含量23.19%)。
试验于2021年5月-10月在中国科学院东北地理与农业生态研究所内盆栽场进行。采用盆栽试验,所用盆为PVC材料(直径20 cm,高45 cm),每盆装土5.5 kg。试验设置2个施氮量:1)LN,5 mg N/kg土;2)HN,100 mg N/kg土。同时设置不施氮处理为对照,即CK。氮肥(尿素,含氮46%)分别在大豆生长发育的V2期(主茎第2节三出复叶全展期)和R1期(始花期),以水溶液的形式随灌溉水施入。随机排列,每个处理4次重复。磷钾肥在土壤装盆前与土壤充分混匀作为基肥,磷肥为过磷酸钙(15% P2O5),钾肥为硫酸钾(52% K2O),施用量均为3 mg/kg土。播种时每盆4粒种子,播后覆土3~4 cm,齐苗后保苗2株。

1.2 样品采集与分析

在大豆R2期(盛花期)和R5期(鼓粒始期)采集植株样品。取样时将完整的大豆根系从盆栽土壤中取出洗净后,测定大豆根瘤数量、干重、固氮酶活性及酰脲含量。根瘤固氮酶活性的测定采用乙炔还原法[18,19],根瘤酰脲含量的测定方法参考Tracey等[20]方法。成熟期(R8期)取样,测定大豆籽粒的产量、脂肪及异黄酮含量,大豆籽粒脂肪含量采用索氏抽提法[21],异黄酮含量测定采用高效液相色谱法[22]

1.3 数据分析

采用SPSS 2020软件对进行双因素ANOVA方差分析,并采用Duncan多重比较计算在0.05水平上的显著性差异检验。使用Amos Graphics软件对大豆根瘤数量、干重、固氮酶活性和大豆籽粒产量、脂肪及异黄酮含量建立结构方程模型图(Structural Equation Model,SEM)。

2 结果与分析

2.1 不同氮肥施用时期和施用量对大豆结瘤特性的影响

V2期和R1期施用氮肥,大豆根瘤数量随着施氮量的增加呈下降(图1)。V2期施氮,LN和HN处理在R2期的大豆根瘤数量较CK处理分别下降了19.0%和69.6%;在R5期较CK处理分别下降了28.4%和42.7%。R1期施氮,LN和HN处理在R2期大豆根瘤数量较CK处理分别下降了21.7%和57.1%;在R5期较CK处理分别下降了29.4%和38.8%。就LN处理而言,在R2期施用大豆根瘤数量大于R1期施用;而HN处理则相反。方差分析结果表明,施氮量对R2期和R5期根瘤数量均有极显著影响。
Fig. 1 Effects of N fertilizer application time and rate on soybean nodule number
Note: T stand for N fertilizer application time; R stand for N fertilizer application rate; V2 stand for N application at V2 stage; R1 stand for N application at R1 stage.; *: P < 0.05; **: P < 0.01; ***: P < 0.001. Same as below

图1 氮肥施用时期和施用量对大豆根瘤数量的影响

注:T:氮肥施用时期;R:氮肥施用量;V2:V2期施用氮肥;R1:R1期施用氮肥;*: P< 0.05;**:P < 0.01;***:P < 0.001;ns:差异不显著。下同

Full size|PPT slide

大豆根瘤干重与根瘤数量的变化趋势基本一致,均以HN处理的大豆根瘤干重最低(图2)。V2期施氮,HN处理在R2期和R5期的大豆根瘤干重较CK处理分别下降了88.4%和52.2%;而等量氮肥在R1期施用时,较CK处理分别下降了65.8%和56.4%。不同施氮时期间,LN处理R2期的大豆根瘤干重无显著差异,在R5期时表现为R1期>V2期;而HN处理下在R2期表现为R1期>V2期,在R5期的大豆根瘤干重无显著差异。方差分析结果表明,施氮量对R2期和R5期大豆根瘤干重均有显著影响(P < 0.05)。
Fig. 2 Effects of N fertilizer application time and rate on soybean nodule dry weight

图2 氮肥施用时期和施用量对大豆根瘤干重的影响

Full size|PPT slide

2.2 不同氮肥施用时期和施用量对大豆根瘤固氮酶活性和酰脲含量的影响

不同氮肥施用时期,R5期固氮酶活性均以LN处理最高,分别为32.54 μmol/(g·h)和29.94 μmol/(g·h)(图3)。在R5期,V2期和R1期LN处理的固氮酶活性较CK处理分别增加了28.5%和18.2%,HN处理固氮酶活性分别较LN处理下降了19.2%和23.2%。V2期施氮在整个生育时期的大豆根瘤固氮酶活性高于R1期施氮。氮肥施用量对大豆固氮酶活性的影响大于氮肥施用时期(P < 0.05)。
Fig. 3 Effects of N fertilizer application time and rate on nitrogenase activity of soybean nodule

图3 氮肥施用时期和施用量对大豆固氮酶活性的影响

Full size|PPT slide

无论V2期还是R1期施氮,LN处理均有利于大豆根瘤酰脲含量的增加(图4)。V2期施氮,LN处理在R2期和R5期酰脲含量比R1期的等氮处理分别增加了3 μmol/g和22 μmol/g。方差分析结果表明,施氮量对R2期和R5期根瘤酰脲含量均有显著影响(P < 0.05),而施氮时期、施氮量及两者之间的交互作用对R5期根瘤酰脲含量均有显著影响(P < 0.05)。
Fig. 4 Effects of N fertilizer application time and rate on ureide content of soybean nodule

图4 氮肥施用时期和施用量对大豆固根瘤酰脲含量的影响

Full size|PPT slide

2.3 不同氮肥施用时期和施用量对大豆籽粒产量、脂肪和异黄酮含量的影响

氮肥施用量对大豆籽粒产量有极显著影响(表1)。V2期和R1期施氮,大豆籽粒产量均以LN处理最高,而HN处理大豆籽粒产量和脂肪含量低于LN处理。V2期施氮,LN处理大豆籽粒脂肪含量较CK处理增加了1.7个百分点;R1期施氮,LN处理大豆籽粒脂肪含量较CK处理增加了2.0个百分点。V2期和R1期施氮,异黄酮含量均表现为CK > LN > HN,其中HN处理的异黄酮含量较CK处理分别下降了11.2%和5.2%。大豆籽粒产量的变化表现为V2期>R1期,而大豆籽粒脂肪和异黄酮含量均表现为R1期>V2期。
Table 1 Effects of N application time and rate on on grain yield, fat and isoflavone content of soybean

表1 氮肥施用时期和施用量对大豆籽粒产量、脂肪和异黄酮含量的影响

施氮时期

Time

施氮量

Rate

产量

Yield /(g/pot)

脂肪含量

Fat /%

异黄酮含量

Isoflavone content /(μg/g)

CK 19.31 22.42 658.05

V2期

V2 stage

LN 25.36 22.81 595.53
HN 22.56 22.66 584.04

R1期

R1 stage

LN 23.95 22.87 654.67
HN 19.87 22.71 623.87
方差分析Analysis of variance
施N时期Time ns ns ns
施N量Rate *** ** **
施N时期*施N量Time*Rate ns ns ns
注:*:P< 0.05; **:P< 0.01;***:P< 0.001;ns-差异不显著
Note: *: P< 0.05; **: P< 0.01; ***: P< 0.001; ns: No significant difference

2.4 大豆根瘤数量、干重、固氮酶活性、酰脲、籽粒产量、脂肪及异黄酮含量之间的关系

通过建立SEM模型来评估高油大豆根瘤数量、固氮酶活性和酰脲含量与大豆产质量之间的关系(图5)。拟合参数χ2 = 2.850,p = 0.899,RMSEA < 0.001,GFI = 0.957,CFI = 1,说明该模型拟合度高,能够有效解释大豆籽粒产量、脂肪和异黄酮含量的变异。施氮量负向调控籽粒脂肪和异黄酮含量、根瘤数量和根瘤干重(P< 0.05)。根瘤数量负向调控固氮酶活性和产量,其通径系数分别为-0.777***和-0.370**。施氮时期负向调控固氮酶活性(P< 0.05),而固氮酶活性正向调控大豆产量,其通径系数为0.851。根瘤干重正向调控籽粒异黄酮含量,而固氮酶活性负向调控籽粒异黄酮含量,其通径系数分别为0.826和-0.567。
Fig. 5 SEM of nodule characteristics, nitrogenase activity, ureide, yield, fat and isoflavone with various N application time and rate
Note: Straight and dashed lines stand for positive and negative relationships (P< 0.05), respectively; Numbers on the arrow indicate significant standardized path coefficients; R2 indicates the variance of dependent variable explained by the model.

图5 施氮量和施氮时期下根瘤特性、固氮酶活性、酰脲、籽粒产量、脂肪及异黄酮含量之间的结构方程图

注:直线和虚线分别表示正负关系(P< 0.05),箭头上的数字表示重要的标准化路径系数;R2 表示模型解释的因变量的方差。

Full size|PPT slide

3 讨论与结论

化肥是影响油料大豆高产的主要因素[23]。氮肥是大豆氮素的主要来源之一,对大豆籽粒产量和脂肪含量的影响存在差异,施氮量过多或过低都会影响大豆的产质量[24-26]。有研究表明氮素降低大豆籽粒中的脂肪含量,且氮肥对高油大豆籽粒蛋白质含量的影响高于高蛋白大豆籽粒中蛋白质的影响[25, 26]。而Kaur等[27]研究表明,相对于未施氮的对照,R1期施179 kg N/hm2的大豆籽粒脂肪含量增加0.7%。Bellaloui等[28]在大豆的V3-V4期施用112 kg N/hm2,籽粒中的硬脂酸、油酸和亚油酸的浓度在两年内平均增加了0.85、7.5和16.1 g/kg。本研究中无论是V2期还是R1期施用氮肥,均以LN处理大豆籽粒产量和脂肪含量最高(表1),而继续施氮(HN)产量和脂肪含量均下降。适量施氮(LN)提高了大豆干物质的积累速率,促进营养元素向大豆籽粒中的转移,进而显著提高了大豆籽粒产量和脂肪的积累[29];而施过量的氮(HN),往往会导致大豆叶面积指数、干物质积累量增加,导致自遮蔽和徒长,降低了大豆的光合速率和蒸腾作用,从而降低产量和脂肪含量[30]。此外本研究V2期施氮对产量和脂肪含量的促进作用高于R1期,这是由于大豆籽粒产量和脂肪含量受源和库流动的影响,营养生长期施用氮肥促进了前期源的增加,提高了花期和荚期叶和茎的干物质积累,提高了花期到荚期的生长率,延缓叶片的老化和脱落,提高了叶片蔗糖和淀粉含量和促进干物质向籽粒的转化[31~33],进而有利于大豆籽粒产量和脂肪含量的累积[34]。郭泰等研究表明底肥或种肥可提高大豆籽粒脂肪含量,而花期追施氮肥,籽粒脂肪含量随施氮量的增加而下降[13]。因此掌握大豆关键生育时期氮肥施用量,对于研究大豆产质量的提升具有直接的作用。
不同施氮量和施氮时期对大豆根瘤形成和生长发育有影响[35]。在本研究中不同时期施高氮HN处理,大豆根瘤数量在R2期和R5期较CK处理分别下降了38.8%~69.6%,根瘤干重较CK处理分别下降了52.2%~88.4%。LN处理下大豆根瘤数量和干重较CK处理有所下降,但显著高于HN处理,这主要是由于豆科植物存在结瘤自主调控机制(Autoregulation of nodulation,AON),即大豆根系在感受环境氮素变化后,通过AON机制调控大豆根系上的根瘤数量[36]。当土壤氮素有效性较低时,光合产物优先向根瘤分配,促进大豆根瘤生长,从而有利于大豆共生固氮功能的发挥[37],而在氮素有效性较高的土壤中,根瘤的固氮作用需要消耗植物自身的碳源,为了维持碳氮平衡,豆科植物在长期进化过程中发展出了一套负反馈调节机制,使已经形成的根瘤能够抑制新的根瘤的形成[38],随着土壤氮水平的增加,可增强根中乙烯的产生,而乙烯是结瘤的负调控因子,进而减少根瘤的形成[39]。本研究中不同施氮量处理大豆根瘤数量和干重较CK处理均下降,V2期施氮对大豆根瘤数量和干重的抑制作用整体表现为小于R1期。同样Gan[11]研究表明,V2期施用氮肥促进大豆结瘤固氮,R1期施用等量氮肥抑制大豆结瘤固氮。因此掌握大豆关键生育时期氮肥施用量,对于研究大豆结瘤固氮和生长发育有重要意义。
固氮酶活性是衡量根瘤固氮的重要指标,其活性的高低与氮有密切的关系[1940]。本研究中,总体上V2和R1期施氮均以LN处理下的根瘤固氮酶活性(每克根瘤干重)和酰脲含量最高(图34)。与本研究结果相似,冯博政等[41]研究结果表明,在砂培条件下豆科作物固氮酶活性和酰脲含量随着施氮量的增加均呈先增加后降低趋势。适量氮肥基肥促使根瘤固氮酶活性高峰期向后推移,减缓大豆根系和根瘤的衰老,从而有利于大豆生育后期干物质和养分的积累[42]。而本研究中HN处理固氮酶活性下降,这是因为大豆吸收大量土壤环境无机氮后,在大豆体内合成的相当一部分碳水化合物会用于合成氨基酸,而向根部输送的碳水化合物自然也就相对减少[43],碳供应的减少除了影响能量和碳骨架代谢外,也减少氧气向根瘤的扩散[44],且外源添加氮增加了根瘤中NO的产生,扰乱NO稳态,豆血红蛋白(Leghemoglobin,Lb)对NO的亲和力高于对O2的亲和力,Lb-NO的形成可能抑制O2向根瘤菌的供应,进而抑制根瘤固氮酶活性[45-47]。有研究分别在大豆V2、R1、R3和R5生育阶段施50 kg N/hm2,固氮能力大小表现为V2 > R1 > R5 > R3[11]。同样的在本研究中V2期施氮大豆根瘤固氮酶活性高于R1期施氮,这与根瘤数量和干重的变化趋势一致(图1~3),这也验证了本研究中结构方程模型中,根瘤干重对固氮酶活性正向调控,而固氮酶活性对产量也具有正向调控作用(图5)。Yong等[48]表明低施氮量(270 kg N/hm2)在V5、R2和R5期叶和茎中酰脲含量均高于常规施氮(330 kg N/hm2)和不施氮。本研究中结构方程模型中表明大豆固氮酶活性与酰脲含量均存在显著的正相关关系(图5),因此酰脲含量可作为评价固氮能力高低一个指标[49]
已有研究结果表明,R1和R3期施氮降低了两个大豆品种中异黄酮含量,且高异黄酮品种较低蛋白品种具有更高比例的大豆苷元,而低蛋白品种大豆中染料木素含量高于高异黄酮品种大豆[15],豆科作物岷山红三叶随着施氮量增加籽粒异黄酮含量下降[50]。本研究中不论是V2期还是R1期施氮,大豆籽粒异黄酮含量均随着施氮量的增加而降低(表1),这是由于豆科作物缺氮时通过提高体内异黄酮含量来促进结瘤固氮[51]。此外根瘤菌感染豆科植物的过程中,豆科植物可以通过增加体内异黄酮含量来抑制植物生长素的运输,使其在结瘤起始部位积聚,刺激细胞分裂和促进根瘤的形成,从而维持正常的生长发育[52]。而增施氮肥能满足作物的生长需求,作为调节结瘤固氮的诱导物质,大豆异黄酮的分泌量也降低。本研究结构方程模型结果表明,施氮量主要是通过影响大豆根瘤数量、干重和固氮酶活性间接影响大豆籽粒产量和异黄酮含量,其中根瘤干重负向调控大豆籽粒异黄酮含量,而固氮酶活性正向调控大豆籽粒产量(图5)。研究表明,大豆所吸收的土壤氮和肥料氮较多地进入了营养器官,而根瘤固定的氮较多分配在大豆籽粒中[53],因此在大豆营养生长与生殖生长并进时期,提高根瘤固氮的能力,有利于对大豆籽粒的形成,最后达到高产优质[54]
本研究设置不同氮素水平和不同施用时期,通过分析高油大豆根瘤数量和干重、固氮酶活性、酰脲、籽粒产量、脂肪及异黄酮含量的变化,得到以下结论:施氮量对高油大豆籽粒产量、脂肪及异黄酮含量的影响大于施氮时期,施氮量既负向调控大豆籽粒脂肪含量,又通过影响对大豆根瘤数量和固氮酶活性,间接影响大豆籽粒产量和异黄酮含量,其中根瘤数量和固氮酶活性负向调控大豆籽粒产量,根瘤干重正向调控异黄酮含量,而固氮酶活性负向调控大豆异黄酮含量。施氮肥有利于籽粒产量的增加,但抑制大豆的结瘤和根瘤的发育,其中V2期施用氮肥更有利于大豆固氮和籽粒产量的提升,而R1期施用氮肥更有利于籽粒脂肪含量的增加,以及对异黄酮抑制作用更小,但施氮量需要控制在5 mg N/kg土为宜。

References

1
Wilson E W Rowntree S C Suhre J J, et al. Genetic gain × management interactions in soybean: II. nitrogen utilization[J]. Crop Sci201454(1): 340-348. DOI: 10.2135/cropsci2013.05.0339 .
2
Cafaro La Menza N Monzon J P Specht J E, et al. Is soybean yield limited by nitrogen supply?[J]. Field Crops Res2017213: 204-212. DOI: 10.1016/j.fcr.2017.08.009 .
3
Ciampitti I A Salvagiotti F. New insights into soybean biological nitrogen fixation[J]. Agron J2018110(4): 1185-1196. DOI: 10.2134/agronj2017.06.0348 .
4
Salvagiotti F Cassman K G Specht J E, et al. Nitrogen uptake, fixation and response to fertilizer N in soybeans: a review[J]. Field Crops Res2008108(1): 1-13. DOI: 10.1016/j.fcr.2008.03.001 .
5
Zhang G W, X u S C, Hu Q Z, et al. Putrescine plays a positive role in salt-tolerance mechanisms by reducing oxidative damage in roots of vegetable soybean[J]. Journal of Integrative Agriculture201413(002): 349-357. DOI: CNKI:SUN:ZGNX.0.2014-02-015 .
6
Hou A Chen P Alloatti J, et al. Genetic variability of seed sugar content in worldwide soybean germplasm collections[J]. Crop Sci200949(3): 903-912. DOI: 10.2135/cropsci2008.05.0256 .
7
严君, 韩晓增, 王守宇, 等. 不同施氮量及供氮方式对大豆根瘤生长及固氮的影响[J]. 江苏农业学报201026(1): 75-79. DOI: 10.3969/j.issn.1000-4440.2010.01.015 .
8
Moreira A Moraes L A C Schroth G, et al. Soybean yield and nutritional status response to nitrogen sources and rates of foliar fertilization[J]. Agron J2017109(2): 629-635. DOI: 10.2134/agronj2016.04.0199 .
9
McCoy J M Kaur G Golden B R, et al. Nitrogen fertilization of soybean affects root growth and nodulation on two soil types in Mississippi[J]. Commun Soil Sci Plant Anal201849(2): 181-187. DOI: 10.1080/00103624.2017.1421649 .
10
Zuffo A M Steiner F Busch A, et al. Response of early soybean cultivars to nitrogen fertilization associated with Bradyrhizobium japonicum inoculation[J]. Pesqui Agropecu Trop201848(4): 436-446. DOI: 10.1590/1983-40632018v4852637 .
11
Gan Y B Stulen I van Keulen H, et al. Effect of N fertilizer top-dressing at various reproductive stages on growth, N2 fixation and yield of three soybean (Glycine max L. Merr. ) genotypes[J]. Field Crops Research200380(2): 147-155. DOI: 10.1016/S0378-4290(02)00171-5 .
12
Gai Z J Zhang J T Li C F. Effects of starter nitrogen fertilizer on soybean root activity, leaf photosynthesis and grain yield[J]. PLoS One201712(4): e0174841. DOI: 10.1371/journal.pone.0174841 .
13
郭泰, 刘秀芝, 郑殿峰, 等. 氮素后移施肥对大豆产量及品质的影响[J]. 大豆科学201534(1): 168-171. DOI: 10.11861/j.issn.1000-9841.2015.01.0168 .
14
Purcell L C Serraj R Sinclair T R, et al. Soybean N2 fixation estimates, ureide concentration, and yield responses to drought[J]. Crop Sci200444(2): 484-492. DOI: 10.2135/cropsci2004.4840 .
15
Vamerali T Barion G Hewidy M, et al. Soybean isoflavone patterns in main stem and branches as affected by water and nitrogen supply[J]. Eur J Agron201241: 1-10. DOI: 10.1016/j.eja.2012.03.003 .
16
Kim S H Jung W S Ahn J K, et al. Quantitative analysis of the isoflavone content and biological growth of soybean (Glycine max L.) at elevated temperature, CO2 level and N application[J]. J Sci Food Agric200585(15): 2557-2566. DOI: 10.1002/jsfa.2294 .
17
冯丽娟, 朱洪德, 于洪久. 栽培措施对高油大豆产量及品质性状的影响[J]. 中国油料作物学报200830(2): 206-211. DOI: 10.3321/j.issn: 1007-9084.2008.02.014 .
18
Gremaud M F Harper J E. Selection and initial characterization of partially nitrate tolerant nodulation mutants of soybean[J]. Plant Physiol198989(1): 169-173. DOI: 10.1104/pp.89.1.169 .
19
Lyu X C Li M Li X, et al. Assessing the systematic effects of the concentration of nitrogen supplied to dual-root systems of soybean plants on nodulation and nitrogen fixation[J]. Agronomy202010(6): 763. DOI: 10.3390/agronomy10060763 .
20
张志良. 植物生理学实验指导[M]. 2版. 北京: 高等教育出版社, 1990.
21
Tracey M V Paech K. Modern methods of plant analysis. Volumes 1 and 4[J]. Moderne Methoden Analyses and Vierter1956103(2): 378-378.
22
Noguchi A Saito A Homma Y, et al. A UDP-glucose: isoflavone 7-O-glucosyltransferase from the roots of soybean (Glycine max) seedlings. Purification, gene cloning, phylogenetics, and an implication for an alternative strategy of enzyme catalysis[J]. J Biol Chem2007282(32): 23581-23590. DOI: 10.1074/jbc.M702651200 .
23
王斌斌, 朱洪德, 唐培坤, 等. 不同肥密对高油大豆品种产量的影响[J]. 现代化农业2015(10): 16-17. DOI: CNKI:SUN:XDHY.0.2015-10-007 .
24
宋英博. 不同施氮量对大豆蛋白质和脂肪含量的影响[J]. 黑龙江农业科学2010(7): 52-53. DOI: 10.3969/j.issn.1002-2767.2010.07.016 .
25
张洪刚, 周琴, 何小红, 等. 播期、密度和肥料对菜用大豆南农9610产量和品质的影响[J]. 江苏农业学报200824(5): 662-667. DOI: 10.3969/j.issn.1000-4440.2008.05.023 .
26
Ma L Li B Han F X, et al. Evaluation of the chemical quality traits of soybean seeds, as related to sensory attributes of soymilk[J]. Food Chem2015173: 694-701. DOI: 10.1016/j.foodchem.2014.10.096 .
27
Kaur G Serson W Orlowski J, et al. Nitrogen sources and rates affect soybean seed composition in Mississippi[J]. Agronomy20177(4): 77. DOI: 10.3390/agronomy7040077 .
28
Bellaloui N Ebelhar M W Gillen A M, et al. Soybean seed protein, oil, and fatty acids are altered by S and S + N fertilizers under irrigated or non-irrigated environments[J]. Agric Sci20112(4): 465-476. DOI: 10.4236/as.2011.24060 .
29
Fageria N K Baligar V C. Enhancing nitrogen use efficiency in crop plants[J]. Adv Agron200588: 97-185. DOI: 10.1016/S0065-2113(05)88004-6 .
30
dos Santos A B Fageria N K. Manejo do nitrogênio Para eficiência de uso por cultivares de feijoeiro em várZea tropical[J]. Pesq Agropec Bras200742(9): 1237-1248. DOI: 10.1590/s0100-204x2007000900004 .
31
Chiluwal A Haramoto E R Hildebrand D, et al. Late-season nitrogen applications increase soybean yield and seed protein concentration[J]. Front Plant Sci202112: 715940. DOI: 10.3389/fpls.2021.715940 .
32
赵双进, 张孟臣, 杨春燕, 等. 栽培因子对大豆生长发育及群体产量的影响 Ⅱ.肥水、生长调控措施对产量的影响[J]. 中国油料作物学报200325(2): 48-51. DOI: 10.3321/j.issn: 1007-9084.2003.02.013 .
33
高阳, 傅积海, 章建新, 等. 施氮量对高产春大豆光合特性及产量的影响[J]. 中国农学通报202036(14): 34-40. DOI: CNKI:SUN:ZNTB.0.2020-14-007 .
34
姜璐, 宁海龙, 李文霞, 等. 氮肥施用量对超早熟大豆源库关系、产量和品质的影响[J]. 中国农学通报201329(30): 105-111. DOI: 10.3969/j.issn.1000-6850.2013.30.020 .
35
甘银波, 陈静. 大豆不同生长阶段施用氮肥对生长、结瘤及产量的影响[J]. 大豆科学199716(2): 125-130. DOI: CNKI:SUN:DDKX.0.1997-02-005 .
36
Gautrat P Laffont C Frugier F, et al. Nitrogen systemic signaling: from symbiotic nodulation to root acquisition[J]. Trends Plant Sci202126(4): 392-406. DOI: 10.1016/j.tplants.2020.11.009 .
37
Saito A Tanabata S Tanabata T, et al. Effect of nitrate on nodule and root growth of soybean (Glycine max (L.) Merr.)[J]. Int J Mol Sci201415(3): 4464-4480. DOI: 10.3390/ijms15034464 .
38
Reid D E Ferguson B J Gresshoff P M. Inoculation- and nitrate-induced CLE peptides of soybean control NARK-dependent nodule formation[J]. Mol Plant Microbe Interact201124(5): 606-618. DOI: 10.1094/MPMI-09-10-0207 .
39
Caba J M Recalde L Ligero F. Nitrate-induced ethylene biosynthesis and the control of nodulation in alfalfa[J]. Plant Cell Environ199821(1): 87-93. DOI: 10.1046/j.1365-3040.1998.00242.x .
40
Tancogne M Bouniols A Wallace S U, et al. Effect of nitrogen fertilization on yield component distribution and assimilate translocation of determinate and indeterminate soybean lines[J]. J Plant Nutr199114(9): 963-973. DOI: 10.1080/01904169109364256 .
41
冯博政, 刘晓静, 郝凤, 等. 外源氮对紫花苜蓿固氮酶活性和酰脲含量的影响及其相关关系研究[J]. 草地学报201624(2): 351-357. DOI: 10.11733/j.issn.1007-0435.2016.02.016 .
42
田艳洪, 刘元英, 张文钊, 等. 不同时期施用氮肥对大豆根瘤固氮酶活性及产量的影响[J]. 东北农业大学学报200839(5): 15-19. DOI: 10.19720/j.cnki.issn.1005-9369.2008.05.004 .
43
严君, 韩晓增. 盆栽条件下土壤无机氮浓度对大豆结瘤、固氮和产量的影响[J]. 中国农业科学201447(10): 1929-1938. DOI: 10.3864/j.issn.0578-1752.2014.10.006 .
44
Serraj R Denison R F, et al. Involvement of ureides in nitrogen fixation inhibition in soybean[J]. Plant Physiol1999119(1): 289-296. DOI: 10.1104/pp.119.1.289 .
45
Vessey J K Waterer J. In search of the mechanism of nitrate inhibition of nitrogenase activity in legume nodules: recent developments[J]. Physiol Plant199284(1): 171-176. DOI: 10.1111/j.1399-3054.1992.tb08780.x .
46
Meakin G E Bueno E Jepson B, et al. The contribution of bacteroidal nitrate and nitrite reduction to the formation of nitrosylleghaemoglobin complexes in soybean root nodules[J]. Microbiology (Reading)2007153(Pt 2): 411-419. DOI: 10.1099/mic.0.2006/000059-0 .
47
Kato K Kanahama K Kanayama Y. Involvement of nitric oxide in the inhibition of nitrogenase activity by nitrate in Lotus root nodules[J]. J Plant Physiol2010167(3): 238-241. DOI: 10.1016/j.jplph.2009.08.006 .
48
Yong T W Chen P Dong Q, et al. Optimized nitrogen application methods to improve nitrogen use efficiency and nodule nitrogen fixation in a maize-soybean relay intercropping system[J]. J Integr Agric201817(3): 664-676. DOI: 10.1016/S2095-3119(17)61836-7 .
49
房春红, 陈秀双, 刘杰, 等. 大豆固氮酶活性与酰脲含量的关系[J]. 东北农业大学学报200839(3): 9-12. DOI: 10.19720/j.cnki.issn.1005-9369.2008.03.003 .
50
刘晓玲, 杜文华, 宋超. 氮磷肥施用量对红三叶中异黄酮含量的影响[J]. 西北农业学报201019(7): 159-163, 180. DOI: 10.3969/j.issn.1004-1389.2010.07.035 .
51
童长春, 刘晓静, 吴勇, 等. 内源异黄酮对紫花苜蓿结瘤固氮及氮效率的调控研究[J]. 草业学报202231(3): 124-135. DOI: 10.11686/cyxb2021011 .
52
Wasson A P Pellerone F I Mathesius U. Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia[J]. Plant Cell200618(7): 1617-1629. DOI: 10.1105/tpc.105.038232 .
53
李奇真, 孙克用, 卢增辉, 等. 夏大豆施肥生理基础及高产栽培技术研究[J]. 中国农业科学198922(4): 41-48. DOI:CNKI:SUN:ZNYK.0.1989-04-007 .
54
柯丹霞, 徐勤朕, 杨娜, 等. 高氮抑制豆科植物结瘤固氮机制研究进展[J]. 生物技术通报201935(10): 40-45. DOI: 10.13560/j.cnki.biotech.bull.1985.2019-0657 .
PDF(3387 KB)

1129

Accesses

0

Citation

Detail

Sections
Recommended

/