中国油料作物学报 ›› 2021, Vol. 43 ›› Issue (6): 1141-1149.doi: 10.19802/j.issn.1007-9084.2020278
收稿日期:
2020-09-17
出版日期:
2021-12-22
发布日期:
2021-12-23
通讯作者:
景岚
E-mail:1948413830@qq.com;jinglan71@126.com
作者简介:
连小雨(1996- ),女,内蒙古乌兰察布市人,硕士研究生,主要从事向日葵病害研究,E-mail: 基金资助:
Xiao-Yu LIAN(), Yan WANG, Yan LU, Lan JING(
)
Received:
2020-09-17
Online:
2021-12-22
Published:
2021-12-23
Contact:
Lan JING
E-mail:1948413830@qq.com;jinglan71@126.com
摘要:
向日葵柄锈菌(Puccinia helianthi Schw.)引发向日葵锈病,对生产具有破坏性。为深入了解锈菌效应蛋白,研究病原与寄主的互作机理,在获得向日葵柄锈菌分泌蛋白组的基础上,利用生物信息学软件预测及分析向日葵柄锈菌效应蛋白,采用qRT-PCR检测其中7个候选效应蛋白基因在接种叶片中的相对表达量。结果表明:在供试的900个锈菌的分泌蛋白中预测到候选效应蛋白497个。基因特征分析显示,开放阅读框长度在200~399 bp之间的最多;信号肽长度集中在16~27个氨基酸残基(占92.96%);信号肽氨基酸组成中亮氨酸出现频率最高,其次为丙氨酸、异亮氨酸;信号肽识别位点以SpⅠ型为主。本研究获得了7个向日葵柄锈菌的效应蛋白,qRT-PCR检测表明柄锈菌接种向日葵叶片后,与纯孢子相比,这7个效应蛋白编码基因均上调表达,说明其参与了锈菌侵染向日葵的过程。
中图分类号:
连小雨, 王妍, 路妍, 景岚. 向日葵柄锈菌效应蛋白的预测及筛选[J]. 中国油料作物学报, 2021, 43(6): 1141-1149.
Xiao-Yu LIAN, Yan WANG, Yan LU, Lan JING. Prediction and screening of effector proteins of Puccinia helianthi[J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(6): 1141-1149.
表1
7个候选效应蛋白基因及UBC引物序列
基因名称 Gene name | 引物(5 '-3') Primer (5 '-3') | 褪火温度 Tm/℃ | 扩增产物 /bp Amplified product |
---|---|---|---|
Cluster32378 | F: ACGTAGCCATTCGAGTCCTT | 62 | 169 |
R: CATTCTTCTGCGGTTTATTGT | |||
Cluster38252.seq.Contig1 | F: GAATGGTCAGGGACTACACT | 60 | 238 |
R: AGGTTTAACCGAACTCTTGG | |||
Cluster39758.seq.Contig1 | F: ACTCTTGCTGCTCACTGGA | 60 | 162 |
R: GCTCGTTAGGATTGTGGATG | |||
Cluster40966.seq.Contig1 | F: TCTGCTCCACTGTACTTGTC | 60 | 125 |
R: TTATGTATGCTCCATCTTCTCA | |||
Cluster17592 | F: CTGAAGAAACAAAGGCAAGAG | 62 | 120 |
R: GATACACGAAGCGTCCCAAA | |||
Cluster36818.seq.Contig1 | F: TTGGTGCTTCTCAAACGATCC | 60 | 194 |
R: CTCCCTCCTTCAAACCCTCT | |||
Cluster29163 | F: ATATCCCAGGAAGCTTGCCA | 63 | 136 |
R: GTGGTGACCAAAGACTGAGACA | |||
UBC | F: GTGGTGACCAAAGACTGAGACA | 60 | 119 |
R: CGACAGTCAGCCAACCTACC |
表2
7个候选效应蛋白的特征
基因名称 Gene name | 无结构域 No domain | SCR半胱氨酸含量 Cysteine(>3%) | 含RCP RCP | 基序 Motif | 可能性 Probability |
---|---|---|---|---|---|
Cluster32378 | √ | 9.9% | - | YxC FxC WxC | 1.000 |
Cluster38252.seq.Contig1 | √ | 12.07% | √ | WxC | 1.000 |
Cluster39758.seq.Contig1 | √ | 8.13% | - | YxC FxC | 1.000 |
Cluster40966.seq.Contig1 | √ | 5.93% | - | YxC FxC | 0.983 |
Cluster17592 | √ | 7.97% | - | FxC WxC | 1.000 |
Cluster36818.seq.Contig1 | √ | - | - | YxC FxC | 0.994 |
Cluster29163 | √ | 8.77% | - | LxAR YxC | 1.000 |
1 |
Putt E D, Sackston W E. Studies on sunflower rust: I. Some sources of rust resistance[J]. Can J Plant Sci, 1957, 37(1): 43-54. DOI:10.4141/cjps57-005.
doi: 10.4141/cjps57-005 |
2 |
路妍, 刘洋, 宋阳, 等. 向日葵NBS-LRR抗病基因家族全基因组分析[J]. 中国油料作物学报, 2020, 42(3): 441-452. DOI:10.19802/j.issn.1007-9084.2019243.
doi: 10.19802/j.issn.1007-9084.2019243 |
3 |
Jones J D G, Dangl J L. The plant immune system[J]. Nature, 2006, 444(7117): 323-329. DOI:10.1038/nature05286.
doi: 10.1038/nature05286 |
4 | 戚拓. 条锈菌重要致病因子PstGSRE1和PstCPK1致病机理研究及利用HIGS技术创制小麦持久抗条锈病材料[D]. 杨凌: 西北农林科技大学, 2018. |
5 |
严霞, 牛晓磊, 陶均. 病原菌诱发的植物先天免疫研究进展[J]. 分子植物育种, 2018, 16(3): 821-831. DOI:10.13271/j.mpb.016.000821.
doi: 10.13271/j.mpb.016.000821 |
6 |
Jones D A, Bertazzoni S, Turo C J, et al. Bioinformatic prediction of plant-pathogenicity effector proteins of fungi[J]. Curr Opin Microbiol, 2018, 46: 43-49. DOI:10.1016/j.mib.2018.01.017.
doi: 10.1016/j.mib.2018.01.017 |
7 |
Prasad P, Savadi S, Bhardwaj S C, et al. Rust pathogen effectors: perspectives in resistance breeding[J]. Planta, 2019, 250(1): 1-22. DOI:10.1007/s00425-019-03167-6.
doi: 10.1007/s00425-019-03167-6 |
8 |
何艳秋, 颜瑞, 蒙姑, 等. 香蕉枯萎病菌1号小种分泌蛋白与效应子的预测与分析[J]. 植物病理学报, 2020, 50(2): 129-140. DOI:10.13926/j.cnki.apps.000458.
doi: 10.13926/j.cnki.apps.000458 |
9 |
范春霞, 王军节, 赵鲁迺克, 等. 甜瓜粉霉病菌效应蛋白编码基因的预测与分析[J]. 植物病理学报, 2020, 8(3): 1–14. DOI:10.13926/j.cnki.apps.000465.
doi: 10.13926/j.cnki.apps.000465 |
10 |
Zhao S, Shang X, Bi W, et al. Genome-wide identification of effector candidates with conserved motifs from the wheat leaf rust fungus Puccinia triticina[J]. Front Microbiol, 2020, 11: 1188. DOI:10.3389/fmicb.2020.01188.
doi: 10.3389/fmicb.2020.01188 |
11 |
Stergiopoulos I, de Wit P J G M. Fungal effector proteins[J]. Annu Rev Phytopathol, 2009, 47(1): 233-263. DOI:10.1146/annurev.phyto.112408.132637.
doi: 10.1146/annurev.phyto.112408.132637 |
12 |
Azizi P, Rafii M Y, Abdullah S N A, et al. Toward understanding of rice innate immunity against Magnaporthe oryzae[J]. Crit Rev Biotechnol, 2016, 36(1): 165-174. DOI:10.3109/07388551.2014.946883.
doi: 10.3109/07388551.2014.946883 |
13 |
Ghanbarnia K, Fudal I, Larkan N J, et al. Rapid identification of the Leptosphaeria maculans avirulence gene AvrLm2 using an intraspecific comparative genomics approach[J]. Mol Plant Pathol, 2015, 16(7): 699-709. DOI:10.1111/mpp.12228.
doi: 10.1111/mpp.12228 |
14 |
陈琦光, 舒灿伟, 杨媚, 等. 植物病原真菌效应分子的研究进展[J]. 基因组学与应用生物学, 2016, 35(11): 3105-3114. DOI:10.13417/j.gab.035.003105.
doi: 10.13417/j.gab.035.003105 |
15 |
Aime M C, McTaggart A R, Mondo S J, et al. Phylogenetics and phylogenomics of rust fungi[M]//Fungal Phylogenetics and Phylogenomics. Amsterdam: Elsevier, 2017: 267-307. DOI:10.1016/bs.adgen.2017.09.011.
doi: 10.1016/bs.adgen.2017.09.011 |
16 |
Jing L, Guo D D, Hu W J, et al. The prediction of a pathogenesis-related secretome of Puccinia helianthi through high-throughput transcriptome analysis[J]. BMC Bioinform, 2017, 18(1): 1-13. DOI:10.1186/s12859-017-1577-0.
doi: 10.1186/s12859-017-1577-0 |
17 |
Saunders D G O, Win J, Cano L M, et al. Using hierarchical clustering of secreted protein families to classify and rank candidate effectors of rust fungi[J]. PLoS One, 2012, 7(1): e29847. DOI:10.1371/journal.pone.0029847.
doi: 10.1371/journal.pone.0029847 |
18 |
Sperschneider J, Williams A H, Hane J K, et al. Evaluation of secretion prediction highlights differing approaches needed for oomycete and fungal effectors[J]. Front Plant Sci, 2015, 6: 1168. DOI:10.3389/fpls.2015.01168.
doi: 10.3389/fpls.2015.01168 |
19 |
Hacquard S, Joly D L, Lin Y C, et al. A comprehensive analysis of genes encoding small secreted proteins identifies candidate effectors in Melampsoralarici-Populina (poplar leaf rust)[J]. Mol Plant-Microbe Interact, 2012, 25(3): 279-293. DOI:10.1094/mpmi-09-11-0238.
doi: 10.1094/mpmi-09-11-0238 |
20 |
Jorda J, Kajava A V. T-REKS: identification of tandem repeats in sequences with a K-meanS based algorithm[J]. Bioinformatics, 2009, 25(20): 2632-2638. DOI:10.1093/bioinformatics/btp482.
doi: 10.1093/bioinformatics/btp482 |
21 |
Nguyen Ba A N, Pogoutse A, Provart N, et al. NLStradamus: a simple Hidden Markov Model for nuclear localization signal prediction[J]. BMC Bioinformatics, 2009, 10: 202. DOI:10.1186/1471-2105-10-202.
doi: 10.1186/1471-2105-10-202 |
22 |
董章勇, 陈欣瑜, 舒永馨, 等. 茄子枯萎病菌致病效应因子的预测分析[J]. 西南农业学报, 2019, 32(6): 1285-1289. DOI:10.16213/j.cnki.scjas.2019.6.013.
doi: 10.16213/j.cnki.scjas.2019.6.013 |
23 |
Petersen T N, Brunak S, von Heijne G, et al. SignalP 4.0: discriminating signal peptides from transmembrane regions[J]. Nat Methods, 2011, 8(10): 785-786. DOI:10.1038/nmeth.1701.
doi: 10.1038/nmeth.1701 |
24 |
Juncker A S, Willenbrock H, von Heijne G, et al. Prediction of lipoprotein signal peptides in Gram-negative bacteria[J]. Protein Sci, 2003, 12(8): 1652-1662. DOI:10.1110/ps.0303703.
doi: 10.1110/ps.0303703 |
25 | 王妍. 基于向日葵锈菌转录组数据的SNP位点挖掘及效应因子的筛选[D]. 呼和浩特: 内蒙古农业大学, 2018. |
26 |
Song Y, Wang Y, Guo D D, et al. Selection of reference genes for quantitative real-time PCR normalization in the plant pathogen Puccinia helianthi Schw[J]. BMC Plant Biol, 2019, 19: 20. DOI:10.1186/s12870-019-1629-x.
doi: 10.1186/s12870-019-1629-x |
27 |
Schmittgen T D, Livak K J. Analyzing real-time PCR data by the comparative C(T) method[J]. Nat Protoc, 2008, 3(6): 1101-1108. DOI:10.1038/nprot.2008.73.
doi: 10.1038/nprot.2008.73 |
28 |
Milne T J, Abbenante G, Tyndall J D, et al. Isolation and characterization of a cone snail protease with homology to CRISP proteins of the pathogenesis-related protein superfamily[J]. J Biol Chem, 2003, 278(33): 31105-31110. DOI:10.1074/jbc.m304843200.
doi: 10.1074/jbc.m304843200 |
29 |
Liu J J, Sturrock R, Ekramoddoullah A K M. The superfamily of thaumatin-like proteins: its origin, evolution, and expression towards biological function[J]. Plant Cell Rep, 2010, 29(5): 419-436. DOI:10.1007/s00299-010-0826-8.
doi: 10.1007/s00299-010-0826-8 |
30 |
de Oliveira A L, Gallo M, Pazzagli L, et al. The structure of the elicitor Cerato-platanin (CP), the first member of the CP fungal protein family, reveals a double ψβ-barrel fold and carbohydrate binding[J]. J Biol Chem, 2011, 286(20): 17560-17568. DOI:10.1074/jbc.m111.223644.
doi: 10.1074/jbc.m111.223644 |
31 |
Kulkarni R D, Kelkar H S, Dean R A. An eight-cysteine-containing CFEM domain unique to a group of fungal membrane proteins[J]. Trends Biochem Sci, 2003, 28(3): 118-121. DOI:10.1016/s0968-0004(03)00025-2.
doi: 10.1016/s0968-0004(03)00025-2 |
32 |
Catanzariti A M, Dodds P N, Lawrence G J, et al. Haustorially expressed secreted proteins from flax rust are highly enriched for avirulence elicitors[J]. Plant Cell, 2006, 18(1): 243-256. DOI:10.1105/tpc.105.035980.
doi: 10.1105/tpc.105.035980 |
33 |
Win J, Chaparro-Garcia A, Belhaj K, et al. Effector biology of plant-associated organisms: concepts and perspectives[J]. Cold Spring Harb Symp Quant Biol, 2012, 77: 235-247. DOI:10.1101/sqb.2012.77.015933.
doi: 10.1101/sqb.2012.77.015933 |
34 |
高金欣, 高士刚, 李雅乾, 等. 玉米弯孢叶斑病菌全基因组分泌蛋白的预测与分析[J]. 植物保护学报, 2015, 42(6): 869-876. DOI:10.13802/j.cnki.zwbhxb.2015.06.002.
doi: 10.13802/j.cnki.zwbhxb.2015.06.002 |
35 |
Nemri A, Saunders D G O, Anderson C, et al. The genome sequence and effector complement of the flax rust pathogen Melampsora lini[J]. Front Plant Sci, 2014, 5: 98. DOI:10.3389/fpls.2014.00098.
doi: 10.3389/fpls.2014.00098 |
36 |
Tobias L, Christian S, Ralf V T. Early insights into the genome sequence of Uromyces fabae[J]. Front Plant Sci, 2014, 5: 587. DOI: 10.3389/fpls.2014.00587.
doi: 10.3389/fpls.2014.00587 |
37 |
Valent B, Khang C H. Recent advances in rice blast effector research[J]. Curr Opin Plant Biol, 2010, 13(4): 434-441. DOI:10.1016/j.pbi.2010.04.012.
doi: 10.1016/j.pbi.2010.04.012 |
38 |
李云锋, 聂燕芳, 王振中. 植物病原真菌分泌蛋白质组学研究进展[J]. 微生物学通报, 2015, 42(6): 1101-1107. DOI:10.13344/j.microbiol.china.140608.
doi: 10.13344/j.microbiol.china.140608 |
39 |
Duplessis S, Cuomo C A, Lin Y C, et al. Obligate biotrophy features unraveled by the genomic analysis of rust fungi[J]. PNAS, 2011, 108(22): 9166-9171. DOI:10.1073/pnas.1019315108.
doi: 10.1073/pnas.1019315108 |
40 |
Duplessis S, Spanu P D, Schirawski J. Biotrophic fungi (powdery mildews, rusts, and Smuts)[M]//The Ecological Genomics of Fungi. Hoboken, N J: John Wiley & Sons, Inc, 2013: 149-168. DOI:10.1002/9781118735893.ch7.
doi: 10.1002/9781118735893.ch7 |
41 |
闫丽斌, 肖淑芹, 薛春生. 玉米大斑病菌全基因组候选效应分子的预测和分析[J]. 沈阳农业大学学报, 2017, 48(1): 15-20. DOI:10.3969/j.issn.1000-1700.2017.01.003.
doi: 10.3969/j.issn.1000-1700.2017.01.003 |
42 |
Godfrey D, Böhlenius H, Pedersen C, et al. Powdery mildew fungal effector candidates share N-terminal Y/F/WxC-motif[J]. BMC Genom, 2010, 11(1): 317. DOI:10.1186/1471-2164-11-317.
doi: 10.1186/1471-2164-11-317 |
43 |
Sperschneider J, Gardiner D M, Dodds P N, et al. EffectorP: predicting fungal effector proteins from secretomes using machine learning[J]. New Phytol, 2016, 210(2): 743-761. DOI:10.1111/nph.13794.
doi: 10.1111/nph.13794 |
44 |
齐悦, 张悦, 李建嫄, 等. 利用本氏烟筛选小麦叶锈菌效应蛋白[J]. 农业生物技术学报, 2020, 28(1): 150-159. DOI:10.3969/j.issn.1674-7968.2020.01.015.
doi: 10.3969/j.issn.1674-7968.2020.01.015 |
45 |
韩长志. 全基因组预测希金斯炭疽菌的候选效应分子[J]. 生物技术, 2015, 25(6): 546-551. DOI:10.16519/j.cnki.1004-311x.2015.06.0108.
doi: 10.16519/j.cnki.1004-311x.2015.06.0108 |
46 |
de Jonge R, van Esse H P, Kombrink A, et al. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants[J]. Science, 2010, 329(5994): 953-955. DOI:10.1126/science.1190859.
doi: 10.1126/science.1190859 |
47 |
Gout L, Fudal I, Kuhn M L, et al. Lost in the middle of nowhere: the AvrLm1 avirulence gene of the dothideomycete Leptosphaeria maculans[J]. Mol Microbiol, 2006, 60(1): 67-80. DOI:10.1111/j.1365-2958.2006.05076.x.
doi: 10.1111/j.1365-2958.2006.05076.x |
48 |
Benjamin P, Sophien K. How do filamentous pathogens deliver effector proteins into plant cells ?[J]. PLoS Biology, 2014, 12(2): 1001801. DOI: 10.1371/journal.pbio.1001801.
doi: 10.1371/journal.pbio.1001801 |
49 |
Sperschneider J, Dodds P N, Gardiner D M, et al. Advances and challenges in computational prediction of effectors from plant pathogenic fungi[J]. PLoS Pathog, 2015, 11(5): e1004806. DOI:10.1371/journal.ppat.1004806.
doi: 10.1371/journal.ppat.1004806 |
[1] | 李鹏祥, 唐桂英, 徐平丽, 朱洁, 单雷, 万书波. 花生线粒体型苹果酸脱氢酶基因AhMMDH1 的结构与表达分析[J]. 中国油料作物学报, 2020, 42(6): 1090-. |
[2] | 胡冬秀, 刘浩, 鲁清, 李海芬, 方加海, 梁炫强. 花生CONSTANS-Like(COL)家族基因的克隆与表达分析[J]. 中国油料作物学报, 2020, 42(5): 778-. |
[3] | 龚静, 路妍, 宋阳, 景岚. 向日葵锈病抗性相关microRNA的挖掘及其靶基因预测[J]. 中国油料作物学报, 2020, 42(4): 687-. |
[4] | 任婧瑶, 蒋春姬, 李新林, 张鹤, 金华, 于海秋. 花生1,3,4-三磷酸肌醇5/6激酶ITPK家族基因的鉴定和分析[J]. 中国油料作物学报, 2020, 42(3): 432-. |
[5] | 王俊皓,谢五洋,徐华祥,袁学顺,周莹,崔喜艳* . 大豆GmAAP 基因的克隆、生物信息学分析及亚细胞定位[J]. 中国油料作物学报, 2019, 41(5): 705-. |
[6] | 袁淑培,张付贵,黄倩,程希,高桂珍,伍晓明*. 甘蓝型油菜及其二倍体祖先种COR413家族基因生物信息学分析[J]. 中国油料作物学报, 2019, 41(4): 507-. |
[7] | 吴健,周永明,王幼平* . 油菜与核盘菌互作分子机理研究进展[J]. 中国油料作物学报, 2018, 40(5): 721-. |
[8] | 姜焕焕,王 通,禹山林,陈明娜,王 冕,陈 娜,潘丽娟,祁佩时*,迟晓元* . 花生14-3-3基因家族的生物信息学分析[J]. 中国油料作物学报, 2018, 40(4): 501-. |
[9] | 陈 宇,李 爽,陈立杰,王媛媛,朱晓峰,刘晓宇,段玉玺* . 抑制谷胱甘肽合成对大豆胞囊线虫发育的影响[J]. 中国油料作物学报, 2018, 40(2): 284-. |
[10] | 赵 辉,张春艳,文 艺,刘玉霞,刘新涛,倪云霞,王 飞,刘红彦*. 菜豆壳球孢侵染芝麻过程中内参基因的筛选[J]. 中国油料作物学报, 2017, 39(3): 393-. |
[11] | 孟德义,郭人铭,赵虎,徐庆华*,杜洋,郝再彬,张达* . 矮秆大豆 SGF14h 结构和功能生物信息学预测和分析[J]. 中国油料作物学报, 2017, 39(2): 152-. |
[12] | 陈湘瑜,徐日荣,熊发前,唐兆秀? . 野生花生Hsp70基因家族的全基因组鉴定及生物信息学分析[J]. 中国油料作物学报, 2016, 38(5): 572-. |
[13] | 马立功,张匀华*,孟庆林,刘志华,王志英* . 向日葵查尔酮合酶HaCHS基因的克隆与逆境应答[J]. 中国油料作物学报, 2016, 38(01): 19-. |
[14] | 郭 燕,詹高淼,杨晓燕,华 玮,吕应堂* . 拟南芥叶片和角果特异性启动子的筛选与分析[J]. 中国油料作物学报, 2015, 37(1): 1-. |
[15] | 陈夕军,张 磊,陈 羽,张家豪,童蕴慧,徐敬友* . 油菜Bnpgip2-1基因的克隆表达与生物信息学分析[J]. 中国油料作物学报, 2014, 36(6): 701-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||