
甘蓝型油菜BnNAC61 基因的克隆及表达特征分析
郝丽芬, 燕孟娇, 皇甫海燕, 宋培玲, 房永雨, 贾晓清, 李子钦, 韩冰
中国油料作物学报 ›› 2021, Vol. 43 ›› Issue (3) : 452.
甘蓝型油菜BnNAC61 基因的克隆及表达特征分析
Cloning and expression characteristics of BnNAC61 gene in Brassica napus
关键词:甘蓝型油菜 /
BnNAC61 基因 /
亚细胞定位 /
转录激活 /
表达分析
{{custom_keyword}} /
Brassica napus /
BnNAC61 gene /
subcellular localization /
transcriptional activation /
expression analysis
{{custom_keyword}} /
[1] Baillo E H, Kimotho R N, Zhang Z, et al. Transcription Factors Associated with Abiotic and Biotic Stress Tolerance and Their Potential for Crops Improvement[J]. Genes, 2019, 10(10):771. DOI:10.3390/genes10100771.
[2] Xiong X P, Sun S C, Zhang X Y, et al. GhWRKY70D13 Regulates Resistance to Verticillium dahliae in Cotton Through the Ethylene and Jasmonic Acid Signaling Pathways[J]. Frontiers in plant science, 2020, 11:69. DOI:10.1038/cr.2008.53.
[3] Himanshu T, Sanjana N, Alka G, et al. A stress associated NAC transcription factor MpSNAC67 from banana (Musa x paradisiaca) is involved in regulation of chlorophyll catabolic pathway[J]. Plant Physiology and Biochemistry, 2018, 132. DOI:10.1111/ppl.12545.
[4] Yang H, Shen F, Wang H, et al. Functional analysis of the SlERF01 gene in disease resistance to S. lycopersici[J]. BMC plant biology, 2020, 20(1):376. doi.org/10.1007/s00425-010-1238-2. DOI:10.3390/ijms21134701.
[5] He Q, Cai H, Bai M, et al. A Soybean bZIP Transcription Factor GmbZIP19 Confers Multiple Biotic and Abiotic Stress Responses in Plant[J]. International journal of molecular sciences, 2020, 21(13): 4701. DOI:10.3390/ijms21134701.
[6] Kim J G, Mudgett M B. Tomato bHLH132 Transcription Factor Controls Growth and Defense and Is Activated by Xanthomonas euvesicatoria Effector XopD During Pathogenesis[J]. Molecular plant-microbe interactions , 2019, 32(12):1614-1622. DOI:10.1074/jbc.M705217200.
[7] Nuruzzaman M, Sharoni A M, Kikuchi S. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants[J]. Frontiers in microbiology,2013, 4:248. DOI:10.3389/fmicb.2013.00248.
[8] Hu H, You J, Fang Y, et al. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice[J]. Plant molecular biology, 2008, 67(1-2):169-181. DOI:10.1007/s11103-008-9309-5.
[9] Singh AK, Sharma V, Pal A K, et al. Genome-wide organization and expression profiling of the NAC transcription factor family in potato (Solanum tuberosum L.) [J]. DNA research, 2013, 20(4):403-423. DOI:10.1093/dnares/dst019.
[10] Le D T, Nishiyama R, Watanabe Y, et al. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress[J]. DNA research, 2011, 18(4):263-276. DOI :10.1093/dnares/dsr015.
[11] Li W, Li X, Chao J, et al. NAC Family transcription factors in tobacco and their potential role in regulating leaf senescence[J]. Frontiers in plant science, 2018, 9:1900. DOI:10.3389/fpls.2018.01900.
[12] Ooka H, Satoh K, Doi K, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J]. DNA research ,2003, 10(6):239-247. DOI:10.1093/dnares/10.6.239.
[13] Olsen A N, Ernst H A, Leggio L L, et al. NAC transcription factors: structurally distinct, functionally diverse[J]. Trends in plant science, 2005, 10(2):79-87. DOI:10.1016/j.tplants.2004.12.010.
[14] Wu Y, Deng Z, Lai J, et al. Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses[J]. Cell research, 2009, 19(11):1279-1290. DOI:10.1038/cr.2009.108.
[15] Wang F, Lin R, Feng J, et al. TaNAC1 acts as a negative regulator of stripe rust resistance in wheat, enhances susceptibility to Pseudomonas syringae, and promotes lateral root development in transgenic Arabidopsis thaliana[J]. Frontiers in plant science, 2015, 6:108. DOI:10.3389/fpls.2015.00108.
[16] Bu Q, Jiang H, Li CB, et al. Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses[J]. Cell research, 2008, 18(7):756-767. DOI:10.1038/cr.2008.53.
[17] Liu Q, Yan S, Huang W, et al. NAC transcription factor ONAC066 positively regulates disease resistance by suppressing the ABA signaling pathway in rice[J]. Plant molecular biology, 2018, 98(4-5):289-302. DOI:10.1007/s11103-018-0768-z.
[18] Zheng X, Chen B, Lu G, et al.Overexpression of a NAC transcription factor enhances rice drought and salt tolerance[J]. Biochemical and biophysical research communications, 2009, 379(4):985-989. Doi:10.1016/j.bbrc.2008.12.163.
[19] Sung S J , Nuri O , Joong C P , et al.Overexpression of OsNAC14 improves drought tolerance in rice[J]. Frontiers in plant science, 2018, 9:310. DOI:10.3389/fpls.2018.00310.
[20] Huang L , Hong Y , Zhang H. Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance[J]. BMC Plant Biology, 2016, 16(1):203. DOI :10.1186/s12870-016-0897-y
[21] Nakashima K, Tran LS, Van Nguyen D, et al, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice[J]. The Plant journal, 2007, 51(4):617-630. DOI:10.1111/j.1365-313X.2007.03168.x.
[22] Niu F, Wang C, Yan J,et al. Functional characterization of NAC55 transcription factor from oilseed rape (Brassica napus L.) as a novel transcriptional activator modulating reactive oxygen species accumulation and cell death[J]. Plant molecular biology, 2016, 92(1/2):89-104. DOI:/10.1016/j.bbrc.2014.10.057.
[23] Niu F, Wang B, Wu F, et al. Canola (Brassica napus L.) NAC103 transcription factor gene is a novel player inducing reactive oxygen species accumulation and cell death in plants[J]. Biochemical and biophysical research communications, 2014, 454(1):30-35. DOI:10.1007/s11103-016-0502-7.
[24] Ying L, Chen H, Cai W. BnNAC485 is involved in abiotic stress responses and flowering time in Brassica napus[J]. Plant physiology and biochemistry, 2014, 79:77-87. DOI:10.1016/j.plaphy.2014.03.004.
[25] Becker M G , Zhang X , Walker P L , et al. Transcriptome analysis of the, Brassica napus, Leptosphaeria maculans, pathosystem identifies receptor, signaling and structural genes underlying plant resistance[J]. The Plant Journal, 2017, 90(3):573-586. DOI: 10.1111/tpj.13514.
[26] Liu S, Kracher B, Ziegler J, et al. Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100[J]. eLife ,2015, 4:e07295. DOI:10.7554/eLife.07295.
[27] Hao Y J, Song Q X, Chen H W, et al. Plant NAC-type transcription factor proteins contain a NARD domain for repression of transcriptional activation[J]. Planta, 2010, 232(5):1033-1043. DOI:10.1007/s00425-010-1238-2.
[28] Zhong H, Guo Q Q, Chen L,et al. Two Brassica napus genes encoding NAC transcription factors are involved in response to high-salinity stress[J]. Plant cell reports, 2012, 31(11):1991-2003. DOI:10.1007/s00299-012-1311-3.
[29] Chen Q, Niu F, Yan J, et al. Oilseed rape NAC56 transcription factor modulates reactive oxygen species accumulation and hypersensitive response-like cell death[J]. Physiologia plantarum, 2017, 160(2):209-221. DOI:10.1111/ppl.12545.
[30] Kim H S, Park B O, Yoo J H, et al. Identification of a calmodulin-binding NAC protein as a transcriptional repressor in Arabidopsis[J]. The Journal of biological chemistry, 2007, 282(50):36292-36302. DOI:10.1074/jbc.M705217200.
[31] Yoshii M, Yamazaki M, Rakwal R, et al. The NAC transcription factor RIM1 of rice is a new regulator of jasmonate signaling[J]. The Plant journal, 2010, 61(5):804-815. DOI:10.1111/j.1365-313X.2009.04107.x.
[32] 孙利军. 水稻ONAC家族基因重叠表达特性及其在抗病抗逆中的功能研究[D].杭州:浙江大学,2012.
Sun L J. Overlapping expression characteristics of ONAC family genes in rice and its function in disease resistance[D].Hangzhou: Zhejiang University,2012.
[33] Huang Y, Li T, Xu Z S, et al. Six NAC transcription factors involved in response to TYLCV infection in resistant and susceptible tomato cultivars[J]. Plant physiology and biochemistry, 2017, 120:61-74. DOI:10.1016/j.plaphy.2017.09.020.
/
〈 |
|
〉 |