甘蓝型油菜BnNAC61 基因的克隆及表达特征分析

郝丽芬, 燕孟娇, 皇甫海燕, 宋培玲, 房永雨, 贾晓清, 李子钦, 韩冰

中国油料作物学报 ›› 2021, Vol. 43 ›› Issue (3) : 452.

PDF(4860 KB)
欢迎访问《中国油料作物学报》, 2025年6月2日 星期一
PDF(4860 KB)
中国油料作物学报 ›› 2021, Vol. 43 ›› Issue (3) : 452. DOI: 10.19802/j.issn.1007-9084.2020364
油料作物产油量相关性状的功能基因鉴定及调控机理解析

甘蓝型油菜BnNAC61 基因的克隆及表达特征分析

  • 郝丽芬(1987-),女,助理研究员,博士,主要从事植物分子病理学研究,E-mail: haolifen616@163.com
作者信息 +

Cloning and expression characteristics of BnNAC61 gene in Brassica napus

Author information +
文章历史 +

摘要

      NAC(即NAM、ATAF和CUC)转录因子参与植物生长、发育、衰老和多种逆境胁迫反应的调控。为阐释甘蓝型油菜BnNAC61 的表达特征,本研究采用RT-PCR方法,从甘蓝型油菜总cDNA中克隆BnNAC61 基因。生物信息学分析表明,其CDS全长846 bp,编码281个氨基酸,N端含有NAM保守结构域;其启动子区存在W-box、响应抗性和胁迫、ABA、MeJA的顺式作用元件。利用烟草瞬时表达系统进行亚细胞定位,结果发现BnNAC61定位在细胞核。酵母试验表明,BnNAC61属于转录激活子,转录激活区位于136~208 aa 区段。利用qRT-PCR研究BnNAC61 的表达模式,结果表明,黑胫病菌(Leptosphaeria biglobosa)接种处理后,BnNAC61 被显著诱导上调表达;逆境胁迫PEG、NaCl、4℃处理后BnNAC61 被不同程度地诱导表达,表现先升高后降低的趋势;激素SA、MeJA和ACC处理后BnNAC61 表达量显著高于对照(P<0.05),而激素ABA处理后,BnNAC61 表达被抑制。上述结果表明BnNAC61 是参与多种逆境胁迫的转录因子,尤其可能在茉莉酸和乙烯信号途径中发挥重要作用。

Abstract

     NAC (NAM, ATAF and CUC) are involved in the regulation of plant growth, development, senescence and and various stress responses. To elucidate expression characteristics of BnNAC61 in Brassica napus, BnNAC61 gene was cloned from total cDNA of B. napus by RT-PCR. Bioinformatics analysis showed that the total length of CDS was 846 bp, encoding 281 amino acids, and N-terminal contained the conserved domain of NAM. Its cis-acting elements of W-box, response to resistance and stress, ABA and MeJA (jasmonic acid methyl ester) were found in promoter region. Subcellular localization using the transient expression system of tobacco showed that BnNAC61 was localized in nucleus. Yeast assay showed that BnNAC61 belonged to the transcriptional activator, and the transcriptional activation region was located at the 136-208 aa. By qRT-PCR, it was found that BnNAC61 expression was significantly up-regulated after inoculation with Leptosphaeria biglobosa. Moreover, BnNaC61 expression was induced by PEG, NaCl and 4℃ stress, and showed a first increasing trend. BnNAC61 expressions after salicylic acid, MeJA and ACC (aminocyclopropane carboxylic acid) treatments were significantly higher than that of the control (P<0.05), although it was inhibited after ABA treatment. These results indicated that BnNAC61 is a transcription factor involved in various stress, especially in signaling pathways of MeJA and ethylene.

关键词

关键词:甘蓝型油菜 / BnNAC61 基因 / 亚细胞定位 / 转录激活 / 表达分析

Key words

Brassica napus / BnNAC61 gene / subcellular localization / transcriptional activation / expression analysis

引用本文

导出引用
郝丽芬, 燕孟娇, 皇甫海燕, 宋培玲, 房永雨, 贾晓清, 李子钦, 韩冰. 甘蓝型油菜BnNAC61 基因的克隆及表达特征分析[J]. 中国油料作物学报, 2021, 43(3): 452 https://doi.org/10.19802/j.issn.1007-9084.2020364
HAO Li-fen, YAN Meng-jiao, HUANGFU Hai-yan, SONG Pei-ling, FANG Yong-yu, JIA Xiao-qing, LI Zi-qin, HAN Bing. Cloning and expression characteristics of BnNAC61 gene in Brassica napus[J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2021, 43(3): 452 https://doi.org/10.19802/j.issn.1007-9084.2020364
中图分类号: 中图分类号:S565.4   

参考文献

[1]            Baillo E H, Kimotho R N, Zhang Z, et al. Transcription Factors Associated with Abiotic and Biotic Stress Tolerance and Their Potential for Crops Improvement[J]. Genes, 2019, 10(10):771. DOI:10.3390/genes10100771.

[2]            Xiong X P, Sun S C, Zhang X Y, et al. GhWRKY70D13 Regulates Resistance to Verticillium dahliae in Cotton Through the Ethylene and Jasmonic Acid Signaling Pathways[J]. Frontiers in plant science, 2020, 11:69. DOI:10.1038/cr.2008.53.

[3]            Himanshu T, Sanjana N, Alka G, et al. A stress associated NAC transcription factor MpSNAC67 from banana (Musa x paradisiaca) is involved in regulation of chlorophyll catabolic pathway[J]. Plant Physiology and Biochemistry, 2018, 132. DOI:10.1111/ppl.12545.

[4]            Yang H, Shen F, Wang H, et al. Functional analysis of the SlERF01 gene in disease resistance to S. lycopersici[J]. BMC plant biology, 2020, 20(1):376. doi.org/10.1007/s00425-010-1238-2. DOI:10.3390/ijms21134701.

[5]            He Q, Cai H, Bai M, et al. A Soybean bZIP Transcription Factor GmbZIP19 Confers Multiple Biotic and Abiotic Stress Responses in Plant[J]. International journal of molecular sciences, 2020, 21(13): 4701. DOI:10.3390/ijms21134701.

[6]            Kim J G, Mudgett M B. Tomato bHLH132 Transcription Factor Controls Growth and Defense and Is Activated by Xanthomonas euvesicatoria Effector XopD During Pathogenesis[J]. Molecular plant-microbe interactions , 2019, 32(12):1614-1622. DOI:10.1074/jbc.M705217200.

[7]            Nuruzzaman M, Sharoni A M, Kikuchi S. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants[J]. Frontiers in microbiology,2013, 4:248. DOI:10.3389/fmicb.2013.00248.

[8]            Hu H, You J, Fang Y, et al. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice[J]. Plant molecular biology, 2008, 67(1-2):169-181. DOI:10.1007/s11103-008-9309-5.

[9]            Singh AK, Sharma V, Pal A K, et al. Genome-wide organization and expression profiling of the NAC transcription factor family in potato (Solanum tuberosum L.) [J]. DNA research, 2013, 20(4):403-423. DOI:10.1093/dnares/dst019.

[10]           Le D T, Nishiyama R, Watanabe Y, et al. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress[J]. DNA research, 2011, 18(4):263-276. DOI :10.1093/dnares/dsr015.

[11]           Li W, Li X, Chao J, et al. NAC Family transcription factors in tobacco and their potential role in regulating leaf senescence[J]. Frontiers in plant science, 2018, 9:1900. DOI:10.3389/fpls.2018.01900.

[12]           Ooka H, Satoh K, Doi K, et al. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana[J]. DNA research ,2003, 10(6):239-247. DOI:10.1093/dnares/10.6.239.

[13]           Olsen A N, Ernst H A, Leggio L L, et al. NAC transcription factors: structurally distinct, functionally diverse[J]. Trends in plant science, 2005, 10(2):79-87. DOI:10.1016/j.tplants.2004.12.010.

[14]           Wu Y, Deng Z, Lai J, et al. Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses[J]. Cell research, 2009, 19(11):1279-1290. DOI:10.1038/cr.2009.108.

[15]           Wang F, Lin R, Feng J, et al. TaNAC1 acts as a negative regulator of stripe rust resistance in wheat, enhances susceptibility to Pseudomonas syringae, and promotes lateral root development in transgenic Arabidopsis thaliana[J]. Frontiers in plant science, 2015, 6:108. DOI:10.3389/fpls.2015.00108.

[16]           Bu Q, Jiang H, Li CB, et al. Role of the Arabidopsis thaliana NAC transcription factors ANAC019 and ANAC055 in regulating jasmonic acid-signaled defense responses[J]. Cell research, 2008, 18(7):756-767. DOI:10.1038/cr.2008.53.

[17]           Liu Q, Yan S, Huang W, et al. NAC transcription factor ONAC066 positively regulates disease resistance by suppressing the ABA signaling pathway in rice[J]. Plant molecular biology, 2018, 98(4-5):289-302. DOI:10.1007/s11103-018-0768-z.

[18]           Zheng X, Chen B, Lu G, et al.Overexpression of a NAC transcription factor enhances rice drought and salt tolerance[J]. Biochemical and biophysical research communications, 2009, 379(4):985-989. Doi:10.1016/j.bbrc.2008.12.163.

[19]           Sung S J , Nuri O , Joong C P , et al.Overexpression of OsNAC14 improves drought tolerance in rice[J]. Frontiers in plant science, 2018, 9:310. DOI:10.3389/fpls.2018.00310.

[20]           Huang L , Hong Y , Zhang H. Rice NAC transcription factor ONAC095 plays opposite roles in drought and cold stress tolerance[J]. BMC Plant Biology, 2016, 16(1):203. DOI :10.1186/s12870-016-0897-y

[21]           Nakashima K, Tran LS, Van Nguyen D, et al, Ito Y, Hayashi N, Shinozaki K, Yamaguchi-Shinozaki K. Functional analysis of a NAC-type transcription factor OsNAC6 involved in abiotic and biotic stress-responsive gene expression in rice[J]. The Plant journal, 2007, 51(4):617-630. DOI:10.1111/j.1365-313X.2007.03168.x.

[22]           Niu F, Wang C, Yan J,et al. Functional characterization of NAC55 transcription factor from oilseed rape (Brassica napus L.) as a novel transcriptional activator modulating reactive oxygen species accumulation and cell death[J]. Plant molecular biology, 2016, 92(1/2):89-104. DOI:/10.1016/j.bbrc.2014.10.057.

[23]           Niu F, Wang B, Wu F, et al. Canola (Brassica napus L.) NAC103 transcription factor gene is a novel player inducing reactive oxygen species accumulation and cell death in plants[J]. Biochemical and biophysical research communications, 2014, 454(1):30-35. DOI:10.1007/s11103-016-0502-7.

[24]           Ying L, Chen H, Cai W. BnNAC485 is involved in abiotic stress responses and flowering time in Brassica napus[J]. Plant physiology and biochemistry, 2014, 79:77-87. DOI:10.1016/j.plaphy.2014.03.004.

[25]           Becker M G , Zhang X , Walker P L , et al. Transcriptome analysis of the, Brassica napus, Leptosphaeria maculans, pathosystem identifies receptor, signaling and structural genes underlying plant resistance[J]. The Plant Journal, 2017, 90(3):573-586. DOI: 10.1111/tpj.13514.

[26]          Liu S, Kracher B, Ziegler J, et al. Negative regulation of ABA signaling by WRKY33 is critical for Arabidopsis immunity towards Botrytis cinerea 2100[J]. eLife ,2015, 4:e07295. DOI:10.7554/eLife.07295.

[27]           Hao Y J, Song Q X, Chen H W, et al. Plant NAC-type transcription factor proteins contain a NARD domain for repression of transcriptional activation[J]. Planta, 2010, 232(5):1033-1043. DOI:10.1007/s00425-010-1238-2.

[28]           Zhong H, Guo Q Q, Chen L,et al. Two Brassica napus genes encoding NAC transcription factors are involved in response to high-salinity stress[J]. Plant cell reports, 2012, 31(11):1991-2003. DOI:10.1007/s00299-012-1311-3.

[29]           Chen Q, Niu F, Yan J, et al. Oilseed rape NAC56 transcription factor modulates reactive oxygen species accumulation and hypersensitive response-like cell death[J]. Physiologia plantarum, 2017, 160(2):209-221. DOI:10.1111/ppl.12545.

[30]           Kim H S, Park B O, Yoo J H, et al. Identification of a calmodulin-binding NAC protein as a transcriptional repressor in Arabidopsis[J]. The Journal of biological chemistry, 2007, 282(50):36292-36302. DOI:10.1074/jbc.M705217200.

[31]           Yoshii M, Yamazaki M, Rakwal R, et al. The NAC transcription factor RIM1 of rice is a new regulator of jasmonate signaling[J]. The Plant journal, 2010, 61(5):804-815. DOI:10.1111/j.1365-313X.2009.04107.x.

[32]           孙利军. 水稻ONAC家族基因重叠表达特性及其在抗病抗逆中的功能研究[D].杭州:浙江大学,2012.

Sun L J. Overlapping expression characteristics of ONAC family genes in rice and its function in disease resistance[D].Hangzhou: Zhejiang University,2012.

[33]           Huang Y, Li T, Xu Z S, et al. Six NAC transcription factors involved in response to TYLCV infection in resistant and susceptible tomato cultivars[J]. Plant physiology and biochemistry, 2017, 120:61-74. DOI:10.1016/j.plaphy.2017.09.020.

 

 

基金

内蒙古科技计划项目(2019GG343);内蒙古科技成果转化专项(2019CG014)

PDF(4860 KB)

1664

Accesses

0

Citation

Detail

段落导航
相关文章

/