油菜Bnpgip2-1基因的克隆表达与生物信息学分析

陈夕军,张 磊,陈 羽,张家豪,童蕴慧,徐敬友*

中国油料作物学报 ›› 2014, Vol. 36 ›› Issue (6) : 701.

PDF(1191 KB)
欢迎访问《中国油料作物学报》, 2025年4月30日 星期三
PDF(1191 KB)
中国油料作物学报 ›› 2014, Vol. 36 ›› Issue (6) : 701. DOI: 10.7505/j.issn.1007-9084.2014.06.002
遣传育种

油菜Bnpgip2-1基因的克隆表达与生物信息学分析

  • 陈夕军(1974-),男,江苏阜宁人,副教授,主要从事植物病害防控及病菌致病机理研究,E-mail:xjchen@yzu.edu.cn
作者信息 +

Cloning, prokaryotic expression and bioinformatics analysis of polygalacturonase-inhibiting protein gene (Bnpgip2-1) from rape

Author information +
文章历史 +

摘要

据GenBank及相关文献提供的序列设计引物,从油菜基因组DNA中扩增出Bnpgip2-1基因完整开放阅读框。该基因全长1 068bp,与已发表的Bnpgip2基因序列(登录号:AF529694)有98%的相似性。RT-PCR分析表明,该基因(已申请序列号为KJ820998)具一个72bp的内含子(544-615),编码区为996bp,含4个限制性内切酶酶切位点(Ava Ⅰ,185;Hind Ⅲ,536;EcoR Ⅰ,929;ApaL Ⅰ,972)。原核表达该基因,表达产物能显著抑制油菜菌核病菌PG活性,抑制率达52.96%。生物信息学分析表明,表达产物BnPGIP2-1有331个氨基酸,理论分子量为36.99kDa,pI为8.35,具强疏水性,主要存在于细胞壁。信号肽切点位于第22和23位氨基酸之间(SFS-KNL),N端和C端各存在5个和3个半胱氨酸残基,可形成3个二硫键;二级结构以α-螺旋(31.12%)、β折叠(16.01%)和无规则线圈(52.87%)为结构元件,具典型的LRR结构;三级结构为10个LRR按右手螺旋规则形成的一个开放裂隙区,可能负责着其与病菌PG的互作。该基因的表达受病原菌侵染的强烈诱导,但对水杨酸(SA)处理不敏感,茉莉酸(JA)处理反而使其下调表达。

Abstract

According to the sequence of GenBank and related references, the open reading frame of gene Bnpgip2-1 (GenBank accession number KJ820998) was amplified, which was 1 068 bp, 98% similarity to Bnpgip2, containing a single intron of 72 bp (position 544-615) and a coding region of 996 bp. 4 restriction enzymes cutting sites of Ava Ⅰ (185), Hind Ⅲ (536), EcoR Ⅰ (929) and ApaL Ⅰ (972) were in this gene. Prokaryotic expression product of the gene could inhibit the polygalacturonases (PGs) activities of Sclerotinia sclerotiorum, the pathogen of rape Sclerotinia stem rot. The inhibition ratio was 52.96%. Bioinformatics result showed that BnPGIP2-1 was a 331 amino acids hydrophobic protein with theoretical molecular weight 36.99 kDa and pI 8.35. The protein was mainly located on cell wall. Its signal peptidesplice site was between 22th and 23th amino acid residue. 5 and 3 cysteines were in N- and C- terminal, forming 3 disulfide bonds. The main structural elements of the deduced protein, which showed the typical leucine-rich repeat (LRR) modular organization, were α-helix, β-sheet and random coil. Tertiary structure was a right-handed helix, consisted of 10 repeated LRR modular organizations, and formed an opening activity cleft which might be responsible for the interaction of PGIP and PGs from the pathogen. Bnpgip2-1 expression was strongly induced by pathogen infection, not affected by SA (salicylic acid), and down-regulated by JA (jasmonic acid).

关键词

多聚半乳糖醛酸酶抑制蛋白 / 原核表达 / 生物信息学分析 / 核盘菌

Key words

Polygalacturonase-inhibiting protein / prokaryotic expression / bioinformatics analysis / Sclerotinia sclerotiorum

引用本文

导出引用
陈夕军,张 磊,陈 羽,张家豪,童蕴慧,徐敬友* . 油菜Bnpgip2-1基因的克隆表达与生物信息学分析[J]. 中国油料作物学报, 2014, 36(6): 701 https://doi.org/10.7505/j.issn.1007-9084.2014.06.002
CHEN Xi-jun, ZHANG Lei, CHEN Yu, ZHANG Jia-hao, TONG Yun-hui, XU Jing-you*. Cloning, prokaryotic expression and bioinformatics analysis of polygalacturonase-inhibiting protein gene (Bnpgip2-1) from rape[J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2014, 36(6): 701 https://doi.org/10.7505/j.issn.1007-9084.2014.06.002

参考文献

[1] Casasoli M, Federici L, Spinelli F, et al. Integration of evolutionary and desolvation energy analysis identifies functional sites in a plant immunity protein [J]. Proceeding of the National Academy Science, USA, 2009, 106: 7 666-7 671.

[2] Spinelli F, Mariotti L, Mattei B, et al. Three aspartic acid residues of polygalacturonase-inhibiting protein (PGIP) from Phaseolus vulgaris are critical for inhibition of Fusarium phyllophilum PG [J]. Plant Biology, 2009, 11(5): 738-745.

[3] Ridley B L, O’Neill M A, Mohnen D. Pectins: structure, biosynthesis and oligogalactruonide-related signaling [J]. Phytochemistry, 2001, 57: 929-967.

[4] Brutus A, Sicilia F, Macone A, et al. Adomain swap approach reveals a role of the plant wall-associated kinase (WAK1) as a receptor of oligogalacturonides [J]. Proceeding of the National Academy Science, USA, 2010, 107: 9 452-9 457.

[5] Eugenio L, Emma F C, Begonya V, et al. Enhancement of the citrus immune system provides effective resistance against Alternaria brown spot disease [J]. Journal of Plant Physiology, 2013, 170: 146-154.

[6] Cervone F, De Lorenzo G, Pressey R. Can Phaseolus PGIP inhibit pectic enzymes from microbes and plants? [J]. Phytochemistry, 1990, 29: 447-449.

[7] Cervone F, Hahn M G, De Lorenzo G, et al. Host-pathogen interactions. XXIII. A plant protein converts fungal pathogenesis factor into an elicitor of plant defense responses [J]. Plant Physiology, 1989, 90: 542-548.

[8] 周晓婴, 陈 松, 戚存和. 油菜(Brassica napus L.)BnPGIP基因克隆及其表达分析 [J]. 江苏农业学报, 2011, 27(3): 488-493.

[9] Khanuja S P S, Shasany A K, Darokar M P, et al. Rapid isolation of DNA from dry and fresh samples of plants producing large amounts of secondary metabolites and essential oils [J]. Plant Molecular Biology Report, 1999, 17: 1-7.

[10] Chung C T, Niemela S L, Miller R H. One-step preparation of competent Escherichia coli: Transformation and storage of bacterial cells in the same solution [J]. Proceeding of the National Academy Science, USA, 1989, 86(8): 2172-2175.

[11] 张 梅, 郭丽清, 关夏玉, 等. AiiA 融合蛋白包涵体变性和复性研究 [J]. 福建师范大学学报, 2008, 24(4): 76-79.

[12] Clark E D B. Refolding of recombinant proteins [J]. Current Opinion in Biotechnology, 1998, 9: 157-163.

[13] 陈夕军, 王友德, 左示敏, 等. 水稻纹枯病菌PG的分离纯化及其理化性质研究[J]. 植物病理学报, 2010, 40(3) : 276-281.

[14] Cheng J, Randall A Z, Sweredoski M J, et al. SCRATCH: a protein structure and structural feature prediction server [J]. Nucleic Acids Research, 2005, 33(7): 72-76.

[15] Fong J H, Keating A E, Singh M. Predicting specificity in bZIP coiled-coil protein interactions [J]. Genome Biology, 2004, 5(2): 2-10.

[16] Lambert C, Leonard N, Bolle X D, et al. ESyPred3D: Prediction of proteins 3D structures [J]. Bioinformatics, 2002, 18 (9): 1 250-1 256.

[17] Harrison R G. Expression of soluble heterologous proteins via fusion with NusA protein [J]. Novation, 2000, 11: 4-7.

[18] Gasteiger E, Hoogland C, Gattiker A, et al. Protein identification and analysis tools on the ExPASy server[A]. Walker J M (ed). The proteomics protocols handbook [M]. Humana Press, 2005. 571-607.

[19] Cserzo M, Eisenhaber F, Eisenhaber B, et al. On filtering false positive transmembrane protein predictions [J]. Protein Engineer, 2002, 15(9): 745-752.

[20] Nakao M C, Nakai K. Improvement of PSORT II protein sorting prediction for mammalian proteins [J]. Genome Informatics, 2002, 13: 441-442.

[21] Bendtsen J D, Nielsen H, Heijne G V, et al. Improved prediction of signal peptides: Signal P 3. 0 [J]. Journal of Molecular Biology, 2004, 340(4): 783-795.

[22] Blom N, Gammeltoft S, Brunak S. Sequence and structure based prediction of eukaryotic protein phosphorylation sites [J]. Journal of Molecular Biology, 1999, 294: 1 351-1 362.

[23] Hegedus D D, Li R G, Buchwaldt L, et al. Brassica napus possesses an expanded set of polygalacturonase inhibitor protein genes that are differentially regulated in response to Sclerotinia sclerotiorum infection, wounding and defense hormone treatment [J]. Planta, 2008, 228: 241-253.

[24] De Lorenzo G, Castoria R, Bellincampi D, et al. Fungal invasion enzymes and their inhibition[A]. Carroll G C, Tudzynski P. The mycota: Plant relationships, Part B[M]. Berlin: Springer-Verlag, 1997: 61-83.

[25] Idnurm A, Howlett B J. Pathogenicity genes of phtopathogenic fungi [J]. Molecular Plant Pathology, 2001, 2: 241-255.

[26] Federici L, Di Matteo A, Fernandez-Recio J, et al. Polygalacturonases inhibiting proteins: players in plant innate immunity [J]. Trends in Plant Science, 2006, 11(2): 65-70.

[27] D’Ovidio R, Mattei B, Roberti S, et al. Polygalacturoases, polygalacturonase-inhibiting proteins and pectic oligomers in plant-pathogen interactions [J]. Biochimica et Biophysica Acta, 2004, 1 696: 237-244.

[28] De Lorenzo G, D’Ovidio R, Cervone F. The role of polygacturonase-inhibiting proteins (PGIPs) in defense against pathogenic fungi [J]. Annual Review of Phytopathology, 2001, 39: 313-335.

[29] Benedetti M, Leggio C, Federici L, et al. Structural resolution of the complex between a fungal polygalacturonase and a plant polygalacturonase-inhibiting protein by small-angle X-ray scattering [J]. Plant Physiology, 2011, 157: 599-607.

[30] Gerardo G S, Daniel K, Gabre K, et al. SPR and differential proteolysis/MS provide further insigt into the interaction between PGIP2 and EPGs [J]. Fungal Biology, 2012, 116: 737-746.

[31] Leckie F, Mattei B, Capodicas C, et al. The specificity of polygalacturonase-inhibiting protein (PGIP): A single amino acid substitution in the solvent-exposedd beta-strand/beta-turn region of the leucine-rich repeat (LRRs) confers a new recognition capability [J]. EMBO Journal, 1999, 18(9): 2 352-2 363.

[32] Machinandiarena M F, Olivieri F P, Daleo G R, et al. Isolation and characterization of a polygalacturonase inhibiting protein from potata leaves. Accumulation in response to salicylic acid, wounding and infection [J]. Plant Physiology and Biochemistry, 2001, 39:129-136.

[33] Li R G, Rimmer R, Yu M, et al. Two Brassica napus polygalacturonase inhibitory protein genes are expressed at different levels in response to biotic and abiotic stresses [J].Planta, 2003, 217:299-308.

基金

江苏省自然科学基金(BK2010305)

PDF(1191 KB)

3283

Accesses

0

Citation

Detail

段落导航
相关文章

/