
油菜Bnpgip2-1基因的克隆表达与生物信息学分析
Cloning, prokaryotic expression and bioinformatics analysis of polygalacturonase-inhibiting protein gene (Bnpgip2-1) from rape
据GenBank及相关文献提供的序列设计引物,从油菜基因组DNA中扩增出Bnpgip2-1基因完整开放阅读框。该基因全长1 068bp,与已发表的Bnpgip2基因序列(登录号:AF529694)有98%的相似性。RT-PCR分析表明,该基因(已申请序列号为KJ820998)具一个72bp的内含子(544-615),编码区为996bp,含4个限制性内切酶酶切位点(Ava Ⅰ,185;Hind Ⅲ,536;EcoR Ⅰ,929;ApaL Ⅰ,972)。原核表达该基因,表达产物能显著抑制油菜菌核病菌PG活性,抑制率达52.96%。生物信息学分析表明,表达产物BnPGIP2-1有331个氨基酸,理论分子量为36.99kDa,pI为8.35,具强疏水性,主要存在于细胞壁。信号肽切点位于第22和23位氨基酸之间(SFS-KNL),N端和C端各存在5个和3个半胱氨酸残基,可形成3个二硫键;二级结构以α-螺旋(31.12%)、β折叠(16.01%)和无规则线圈(52.87%)为结构元件,具典型的LRR结构;三级结构为10个LRR按右手螺旋规则形成的一个开放裂隙区,可能负责着其与病菌PG的互作。该基因的表达受病原菌侵染的强烈诱导,但对水杨酸(SA)处理不敏感,茉莉酸(JA)处理反而使其下调表达。
多聚半乳糖醛酸酶抑制蛋白 / 原核表达 / 生物信息学分析 / 核盘菌 {{custom_keyword}} /
Polygalacturonase-inhibiting protein / prokaryotic expression / bioinformatics analysis / Sclerotinia sclerotiorum {{custom_keyword}} /
[1] Casasoli M, Federici L, Spinelli F, et al. Integration of evolutionary and desolvation energy analysis identifies functional sites in a plant immunity protein [J]. Proceeding of the National Academy Science, USA, 2009, 106: 7 666-7 671.
[2] Spinelli F, Mariotti L, Mattei B, et al. Three aspartic acid residues of polygalacturonase-inhibiting protein (PGIP) from Phaseolus vulgaris are critical for inhibition of Fusarium phyllophilum PG [J]. Plant Biology, 2009, 11(5): 738-745.
[3] Ridley B L, O’Neill M A, Mohnen D. Pectins: structure, biosynthesis and oligogalactruonide-related signaling [J]. Phytochemistry, 2001, 57: 929-967.
[4] Brutus A, Sicilia F, Macone A, et al. Adomain swap approach reveals a role of the plant wall-associated kinase (WAK1) as a receptor of oligogalacturonides [J]. Proceeding of the National Academy Science, USA, 2010, 107: 9 452-9 457.
[5] Eugenio L, Emma F C, Begonya V, et al. Enhancement of the citrus immune system provides effective resistance against Alternaria brown spot disease [J]. Journal of Plant Physiology, 2013, 170: 146-154.
[6] Cervone F, De Lorenzo G, Pressey R. Can Phaseolus PGIP inhibit pectic enzymes from microbes and plants? [J]. Phytochemistry, 1990, 29: 447-449.
[7] Cervone F, Hahn M G, De Lorenzo G, et al. Host-pathogen interactions. XXIII. A plant protein converts fungal pathogenesis factor into an elicitor of plant defense responses [J]. Plant Physiology, 1989, 90: 542-548.
[8] 周晓婴, 陈 松, 戚存和. 油菜(Brassica napus L.)BnPGIP基因克隆及其表达分析 [J]. 江苏农业学报, 2011, 27(3): 488-493.
[9] Khanuja S P S, Shasany A K, Darokar M P, et al. Rapid isolation of DNA from dry and fresh samples of plants producing large amounts of secondary metabolites and essential oils [J]. Plant Molecular Biology Report, 1999, 17: 1-7.
[10] Chung C T, Niemela S L, Miller R H. One-step preparation of competent Escherichia coli: Transformation and storage of bacterial cells in the same solution [J]. Proceeding of the National Academy Science, USA, 1989, 86(8): 2172-2175.
[11] 张 梅, 郭丽清, 关夏玉, 等. AiiA 融合蛋白包涵体变性和复性研究 [J]. 福建师范大学学报, 2008, 24(4): 76-79.
[12] Clark E D B. Refolding of recombinant proteins [J]. Current Opinion in Biotechnology, 1998, 9: 157-163.
[13] 陈夕军, 王友德, 左示敏, 等. 水稻纹枯病菌PG的分离纯化及其理化性质研究[J]. 植物病理学报, 2010, 40(3) : 276-281.
[14] Cheng J, Randall A Z, Sweredoski M J, et al. SCRATCH: a protein structure and structural feature prediction server [J]. Nucleic Acids Research, 2005, 33(7): 72-76.
[15] Fong J H, Keating A E, Singh M. Predicting specificity in bZIP coiled-coil protein interactions [J]. Genome Biology, 2004, 5(2): 2-10.
[16] Lambert C, Leonard N, Bolle X D, et al. ESyPred3D: Prediction of proteins 3D structures [J]. Bioinformatics, 2002, 18 (9): 1 250-1 256.
[17] Harrison R G. Expression of soluble heterologous proteins via fusion with NusA protein [J]. Novation, 2000, 11: 4-7.
[18] Gasteiger E, Hoogland C, Gattiker A, et al. Protein identification and analysis tools on the ExPASy server[A]. Walker J M (ed). The proteomics protocols handbook [M]. Humana Press, 2005. 571-607.
[19] Cserzo M, Eisenhaber F, Eisenhaber B, et al. On filtering false positive transmembrane protein predictions [J]. Protein Engineer, 2002, 15(9): 745-752.
[20] Nakao M C, Nakai K. Improvement of PSORT II protein sorting prediction for mammalian proteins [J]. Genome Informatics, 2002, 13: 441-442.
[21] Bendtsen J D, Nielsen H, Heijne G V, et al. Improved prediction of signal peptides: Signal P 3. 0 [J]. Journal of Molecular Biology, 2004, 340(4): 783-795.
[22] Blom N, Gammeltoft S, Brunak S. Sequence and structure based prediction of eukaryotic protein phosphorylation sites [J]. Journal of Molecular Biology, 1999, 294: 1 351-1 362.
[23] Hegedus D D, Li R G, Buchwaldt L, et al. Brassica napus possesses an expanded set of polygalacturonase inhibitor protein genes that are differentially regulated in response to Sclerotinia sclerotiorum infection, wounding and defense hormone treatment [J]. Planta, 2008, 228: 241-253.
[24] De Lorenzo G, Castoria R, Bellincampi D, et al. Fungal invasion enzymes and their inhibition[A]. Carroll G C, Tudzynski P. The mycota: Plant relationships, Part B[M]. Berlin: Springer-Verlag, 1997: 61-83.
[25] Idnurm A, Howlett B J. Pathogenicity genes of phtopathogenic fungi [J]. Molecular Plant Pathology, 2001, 2: 241-255.
[26] Federici L, Di Matteo A, Fernandez-Recio J, et al. Polygalacturonases inhibiting proteins: players in plant innate immunity [J]. Trends in Plant Science, 2006, 11(2): 65-70.
[27] D’Ovidio R, Mattei B, Roberti S, et al. Polygalacturoases, polygalacturonase-inhibiting proteins and pectic oligomers in plant-pathogen interactions [J]. Biochimica et Biophysica Acta, 2004, 1 696: 237-244.
[28] De Lorenzo G, D’Ovidio R, Cervone F. The role of polygacturonase-inhibiting proteins (PGIPs) in defense against pathogenic fungi [J]. Annual Review of Phytopathology, 2001, 39: 313-335.
[29] Benedetti M, Leggio C, Federici L, et al. Structural resolution of the complex between a fungal polygalacturonase and a plant polygalacturonase-inhibiting protein by small-angle X-ray scattering [J]. Plant Physiology, 2011, 157: 599-607.
[30] Gerardo G S, Daniel K, Gabre K, et al. SPR and differential proteolysis/MS provide further insigt into the interaction between PGIP2 and EPGs [J]. Fungal Biology, 2012, 116: 737-746.
[31] Leckie F, Mattei B, Capodicas C, et al. The specificity of polygalacturonase-inhibiting protein (PGIP): A single amino acid substitution in the solvent-exposedd beta-strand/beta-turn region of the leucine-rich repeat (LRRs) confers a new recognition capability [J]. EMBO Journal, 1999, 18(9): 2 352-2 363.
[32] Machinandiarena M F, Olivieri F P, Daleo G R, et al. Isolation and characterization of a polygalacturonase inhibiting protein from potata leaves. Accumulation in response to salicylic acid, wounding and infection [J]. Plant Physiology and Biochemistry, 2001, 39:129-136.
[33] Li R G, Rimmer R, Yu M, et al. Two Brassica napus polygalacturonase inhibitory protein genes are expressed at different levels in response to biotic and abiotic stresses [J].Planta, 2003, 217:299-308.
江苏省自然科学基金(BK2010305)
/
〈 |
|
〉 |