三角褐指藻岩藻黄素合成途径及其关键基因对高光照的响应

张南南,罗 玲,陈 卓,杨之帆,黄凤洪,万 霞,龚阳敏

中国油料作物学报 ›› 2017, Vol. 39 ›› Issue (1) : 128.

PDF(1881 KB)
欢迎访问《中国油料作物学报》, 2025年5月21日 星期三
PDF(1881 KB)
中国油料作物学报 ›› 2017, Vol. 39 ›› Issue (1) : 128. DOI: 10.7505/j.issn.1007-9084.2017.01.020
特种油料生物

三角褐指藻岩藻黄素合成途径及其关键基因对高光照的响应

  • 张南南(1992-),女,新疆乌苏人,硕士研究生,研究方向为微生物生化与分子生物学,E-mail:zhangnanhub@163.com
作者信息 +

Biosynthesis pathway of fucoxanthin and change of expression levels of key genes for fucoxanthin synthesis in response to high irradiance in Phaeodactylum tricornutum

Author information +
文章历史 +

摘要

本研究以三角褐指藻为材料,以三角褐指藻岩藻黄素的合成途径中主要的六个酶:八氢番茄红素合成
酶、八氢番茄红素脱氢酶、ζ-胡萝卜素脱氢酶、胡萝卜素异构酶、番茄红素β-环化酶和玉米黄素环氧酶为研究对
象,研究高光照胁迫对三角褐指藻岩藻黄素合成代谢途径中关键基因表达量以及岩藻黄素含量的变化规律。以光
照强度为500μmolphotons/(m2·s),分别照射处理三角褐指藻3h,6h,12h,采用HPLC对岩藻黄素含量进行定
量分析。随着光照时间的延长,岩藻黄素含量呈现先上升后下降的趋势;高光照6h样品中岩藻黄素含量为1.85mg
·g-1DCW (DryCellWeight),比高光照0h对照组中岩藻黄素含量增加了2.16倍。qRT-PCR分析结果表明玉米
黄素环氧酶基因zep1和八氢番茄红素合成酶基因pys转录本在高光照胁迫6h丰度最高,与对照组相比提高了近
两倍,基因表达量的变化表现出与岩藻黄素含量变化相一致的趋势。高光照处理3h后,胡萝卜素异构酶基因crti
so3,八氢番茄红素脱氢酶基因pds,ζ-胡萝卜素脱氢酶基因zds的表达水平相比于对照组明显降低,表现出应对高
光照胁迫的快速响应;番茄红素β-环化酶基因lcyb,胡萝卜素异构酶基因crtiso1的表达水平则在高光照处理12h
后明显提高;与zep1和pys相比,lcyb和crtiso1基因的表达对高光强胁迫处理的响应时间要滞后至少6h。本研究揭
示了高光照胁迫处理下三角褐指藻中岩藻黄素含量及其合成途径中关键基因的表达模式,表明zep1和pys基因表
达水平与岩藻黄素合成量之间存在明显的线性关系。

Abstract

In this study, we examined the changes of fucoxanthin content and transcript quantity of key genes encoding biosynthesis pathway of fucoxanthin containing six key enzymes,phytoene synthase, phytoene desaturase, ζ-carotene desaturase, carotenoid isomerase, lycopene β-cyclase, and zeaxanthin epoxidase (excluding the unidentified enzymes in diadinoxanthin cycle and violaxanthin cycle) in the diatom P. tricornutum. P. tricornutum cells were exposed to high light intensity of 500μE/(m2•s) for 3h, 6h and 12h; and fucoxanthin content was quantified by HPLC. Fucoxanthin content increased and then declined during 12 h of high irradiance, and peaked at 6h (1.85 mg·g-1DCW), which was 2.16-fold higher than that of control sample (0h for high irradiance). Quantitive RT-PCR showed that the transcript abundances of genes encoding zeaxanthin epoxidase (zep1) and phytoene synthase (pys) peaked at 6h of high irradiance, which was two-fold higher than that of control (0h for high irradiance) and consistent with the trend of change of fucoxanthin content. The transcript quantity of the genes encoding ζ-carotene desaturase3, (crtiso3), phytoene desaturase (pds) and ζ-carotene desaturase (zds) decreased greatly upon high irradiance for 3h compared to the control, and showed a rapid response to high irradiance stress. The expression levels of genes encoding lycopene β-cyclase (lcyb) and carotenoid isomerase (crtiso1) was only enhanced after high irradiance for 12 h. The response of the expression of lcyb and crtiso1 to high irradiance stress was at least 6 h later than that of zep1 and pys. This study revealed the change of fucoxanthin content and expression pattern of genes encoding fucoxanthin biosynthesis pathway under the condition of high irradiance stress in the diatom P. tricornutum, showing an evident linear relationship between fucoxanthin content and the expression levels of zep1 and pys.

关键词

高光照 / 三角褐指藻 / 岩藻黄素 / 转录本丰度

Key words

 high irradiance / Phaeodactylum tricornutum / fucoxanthin / transcript abundance

引用本文

导出引用
张南南,罗 玲,陈 卓,杨之帆,黄凤洪,万 霞,龚阳敏 . 三角褐指藻岩藻黄素合成途径及其关键基因对高光照的响应[J]. 中国油料作物学报, 2017, 39(1): 128 https://doi.org/10.7505/j.issn.1007-9084.2017.01.020
ZHANG Nan-Nan, LUO-Ling, CHEN-Zhuo, YANG Zhi-Fan, WAN-Xia, GONG Yang-Min* . Biosynthesis pathway of fucoxanthin and change of expression levels of key genes for fucoxanthin synthesis in response to high irradiance in Phaeodactylum tricornutum[J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2017, 39(1): 128 https://doi.org/10.7505/j.issn.1007-9084.2017.01.020

参考文献

[1] Muller-Feuga A. The role of microalgae in aquaculture: situation and trends[J]. Journal of Applied Phycology, 2000, 12(3-5): 527-534.

[2] Zhao P, Zang Z, Xie X, et al. The influence of different flocculants on the physiological activity and fucoxanthin production of Phaeodactylum tricornutum[J]. Process Biochemistry, 2014, 49(4): 681-687.

[3] Bowler C, Allen A E, Badger J H, et al. The Phaeodactylum genome reveals the evolutionary history of diatom genomes[J]. Nature, 2008, 456(7219): 239-244.

[4] Yi Z, Xu M, Magnusdottir M, et al. Photo-Oxidative Stress-Driven Mutagenesis and Adaptive Evolution on the Marine Diatom Phaeodactylum tricornutum for Enhanced Carotenoid Accumulation[J]. Marine drugs, 2015, 13(10): 6138-6151.

[5] Mikami K, Hosokawa M. Biosynthetic pathway and health benefits of fucoxanthin, an algae-specific xanthophyll in brown seaweeds[J]. International journal of molecular sciences, 2013, 14(7): 13763-13781.

[6] Veith T, Brauns J,Weisheit W,Mittag M,Büchel C. Identification of a specific fucoxanthin-chlorophyll protein in the light harvesting complex of photosystem I in the diatom. Cyclotella meneghiniana [J]. Biochim. Biophys. Acta, 2009, 1787( 7) : 905.

[7] Abidov M, Ramazanov Z, Seifulla R, et al. The effects of Xanthigen™ in the weight management of obese premenopausal women with non‐alcoholic fatty liver disease and normal liver fat[J]. Diabetes, obesity and metabolism, 2010, 12(1): 72-81.

[8] Woo M N, Jeon S M, Kim H J, et al. Fucoxanthin supplementation improves plasma and hepatic lipid metabolism and blood glucose concentration in high-fat fed C57BL/6N mice[J]. Chemico-Biological Interactions, 2010, 186(3): 316-322.

[9] Stauber J L, Jeffrey S W. PHOTOSYNTHETIC PIGMENTS IN FIFTY‐ONE SPECIES OF MARINE DIATOMS1[J]. Journal of Phycology, 1988, 24(2): 158-172.

[10] Britton G. UV/visible spectroscopy[J]. ChemInform, 1995, 26(32).

[11] Bertrand M. Carotenoid biosynthesis in diatoms[J]. Photosynthesis research, 2010, 106(1-2): 89-102.

[12] Coesel S, Oborník M, Varela J, et al. Evolutionary origins and functions of the carotenoid biosynthetic pathway in marine diatoms[J]. PloS one, 2008, 3(8): e2896.

[13] Lohr, M.; Wilhelm, C. Xanthophyll synthesis in diatoms: Quantification of putative intermediates and comparison of pigment conversion kinetics with rate constants derived from a model. Planta 2001, 212, 382–391.

[14] Dambek M, Eilers U, Breitenbach J, et al. Biosynthesis of fucoxanthin and diadinoxanthin and function of initial pathway genes in Phaeodactylum tricornutum[J]. Journal of experimental botany, 2012.

[15] Brunet C, Chandrasekaran R, Barra L, et al. Spectral radiation dependent photoprotective mechanism in the diatom Pseudo-nitzschia multistriata[J]. PloS one, 2014, 9(1): e87015.

[16] WANG W J, WANG G C, Zhang M, et al. Isolation of fucoxanthin from the rhizoid of Laminaria japonica Aresch[J]. Journal of Integrative Plant Biology, 2005, 47(8): 1009-1015.

[17] Sánchez-Saavedra M P, Voltolina D. Effect of photon fluence rates of white and blue-green light on growth efficiency and pigment content of three diatom species in batch cultures[J]. Ciencias Marinas, 2002, 28(3): 273-279..

[18] Kuczynska P, Jemiola-Rzeminska M, Strzalka K. Photosynthetic Pigments in Diatoms[J]. Marine drugs, 2015, 13(9): 5847-5881.

[19] 朱帅旗, 龚一富, 刘浩, 等. 硫酸铈铵对三角褐指藻岩藻黄素含量的影响及转录差异研究[J]. 中国稀土学报, 2014, 32(6): 750-757.

[20] Carreto J I, Catoggio J A. Variations in pigment contents of the diatom Phaeodactylum tricornutum during growth[J]. Marine Biology, 1976, 36(2): 105-112.

[21] Kosakowska A, Lewandowska J, Stoń J, et al. Qualitative and quantitative composition of pigments in Phaeodactylum tricornutum (Bacillariophyceae) stressed by iron[J]. BioMetals, 2004, 17(1): 45-52.

[22] Järup L. Hazards of heavy metal contamination[J]. British medical bulletin, 2003, 68(1): 167-182.

[23] 臧正蓉, 解修俊, 赵佩佩, 等. 温度和光照对三角褐指藻的生长及岩藻黄素含量的影响[J]. Marine Sciences, 2015, 39(7): 1.

[24] Alexandre M T A, Gundermann K, Pascal A A, et al. Probing the carotenoid content of intact Cyclotella cells by resonance Raman spectroscopy[J]. Photosynthesis research, 2014, 119(3): 273-281.

[25] Brotas V, Plante-Cuny M R. The use of HPLC pigment analysis to study microphytobenthos communities[J]. Acta Oecologica, 2003, 24: S109-S115.

[26] Katayama T, Murata A, Taguchi S. Responses of pigment composition of the marine diatom Thalassiosira weissflogii to silicate availability during dark survival and recovery[J]. Plankton and Benthos Research, 2011, 6(1): 1-11.

[27] Kim S M, Jung Y J, Kwon O N, et al. A potential commercial source of fucoxanthin extracted from the microalga Phaeodactylum tricornutum[J]. Applied biochemistry and biotechnology, 2012, 166(7): 1843-1855.

[28] 闫相勇, 刘翼翔, 吴永沛, 等. 海带岩藻黄素的提取及纯化工艺研究[J]. 中国食品学报, 2014 (3): 115-121.

[29] 汪曙晖. 海藻中岩藻黄素的分离鉴定及抗肿瘤活性研究 [D]. 中国海洋大学, 2010.

基金

中国农业科学院科技创新工程项目(CAAS-ASTIP-2013-OCRI)

PDF(1881 KB)

2967

Accesses

0

Citation

Detail

段落导航
相关文章

/