
一个花生早期胚特异性表达基因AhDGAT3启动子的克隆及功能分析
石 磊, 齐飞艳, 苗利娟, 黄冰艳, 刘 华, 张忠信, 高 伟, 董文召, 汤丰收, 张新友*
中国油料作物学报 ›› 2018, Vol. 40 ›› Issue (1) : 25.
一个花生早期胚特异性表达基因AhDGAT3启动子的克隆及功能分析
Cloning and functional analysis of a novel early embryo-specific expressed AhDGAT3 promoter from Arachis hypogaea L.
为获得在早期胚中特异性表达启动子,本研究通过基因组步移技术对AhDGAT3(GenBank: AY875644.1)的启动子进行克隆。研究结果表明,获得了AhDGAT3 起始密码子ATG上游 5´侧翼序列2181 bp,应用PLACE和plantCARE在线分析显示,AhDGAT3启动子除了含有核心调控元件TATA-box和CAAT-box之外,还有多个非生物胁迫作用元件,如茉莉酸响应元件、防御和干旱胁迫响应元件TC-rich repeats、光响应元件、干旱诱导的MYB结合位点、光响应MYB结合位点等之外,还包含种子表达相关顺式作用元件及分裂组织表达相关元件。构建重组载体pBI121-PAhDGAT3,转化拟南芥,GUS染色结果显示,该启动子能驱动下游GUS基因,仅在发育早期的心型胚期至鱼雷型胚期较短时间内的胚中特异性表达。
To characterize an early embryo-specific promoter, the putative promoter region of AhDGAT3 (GenBank: AY875644.1) was isolated by nested PCR-based genomic walking method. Results showed that the 2181 bp 5´ flanking sequence of AhDGAT3 was isolated. Sequence analysis in PLACE and plantCARE database identified the core regulatory elements such as TATA-box and CAAT-box, the putative cis-acting regulatory elements involved in MeJA-responsiveness, defense stress responsiveness, light-responsiveness, heat stress responsiveness and further the seed or embryo-specific elements. For the functional and characteristic analysis of AhDGAT3 promoter, the recombinant vector pBI121-PAhDGAT3 was designated and transformed into Arabidopsis. Histochemical staining revealed that the activity of pAhDGAT3 was restricted to a short temporal and spatial window from the heart stage to torpedo stage of the embryo.
花生 / DGAT3 / 早期胚 / 种子特异性启动子 / GUS报告基因 {{custom_keyword}} /
Peanut (Arachis hypogaea L.) / DGAT3 / Early embryo / Seed-speci?c promoter / GUS reporter gene {{custom_keyword}} /
[1] 赵 艳, 刘晓鑫, 张庆林, 等. 大豆种子特异性启动子研究进展[J]. 大豆科学, 2010, 29(1): 151 - 156.
[2] Fang R X, Nagy F, Sivasubramaniam S, et al. Multiple cis regulatory elements for maximal expression of the cauliflower mosaic virus 35S promoter in transgenic plants [J]. The Plant Cell, 1989, 1(1): 141-50.
[3] Christensen A H, Sharrock R A, Quail P H. Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation [J]. Plant Molecular Biology, 1992, 18(4): 675-689.
[4] Mc Elroy D, Zhang W, Cao J, et al. Isolation of an Efficient Actin Promoter for Use in Rice Transformation [J]. The Plant Cell, 1990, 2(2): 163-71.
[5] Hsieh T H, Lee J, Charng Y, Chan M T. Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress [J]. Plant Physiology, 2002, 130(2): 618-626.
[6] Hammond-Kosack K E, Parker J E. Deciphering plant–pathogen communication: fresh perspectives for molecular resistance breeding [J]. Current Opinion in Biotechnology, 2003, 14(2): 177-193.
[7] 徐志超, 陆晓菡, 杜 娟, 等. Leafy启动子控制下5-烯醇式丙酮酰-莽草酸-3-磷酸合酶基因(CP4EPSPS)的表达增强芽对草甘膦的抗性[J]. 农业生物技术学报, 2012, 20(1): 23-29.
[8] Kluth A, Sprunck S, Becker D, et al. 5´ deletion of a gbss1 promoter region from wheat leads to changes in tissue and developmental specificities [J]. Plant Molecular Biology, 2002, 49(6): 665-678.
[9] Chen X, Wang Z, Gu R, et al. Isolation of the maize Zpu1 gene promoter and its functional analysis in transgenic tobacco plants[J]. Plant Cell Reports, 2007, 26(9): 1555-1565.
[10] Li QF, Zhang G Y, Dong Z W, et al. Characterization of expression of the OsPUL gene encoding a pullulanase-type debranching enzyme during seed development and germination in rice [J]. Plant Physiology and Biochemistry, 2009, 47(5): 351-358.
[11] Li Q F, Sun S M, Liu Q Q. Characterization of the spatial and temporal expression of the OsSSII-3 gene encoding a key soluble starch synthase in rice [J]. Journal of the Science of Food and Agriculture, 2013, 93(13): 3184-3190.
[12] Chandrasekharan M B, Bishop K J, Hall T C. Module-specific regulation of the β-phaseolin promoter during embryogenesis [J]. The Plant Journal, 2003, 33(5): 853-866.
[13] Josefsson L G, Lenman M, Ericson M L, et al. Structure of a gene encoding the 1.7 S storage protein, napin, from Brassica napus [J]. Journal of Biological Chemistry, 1987, 262(25): 12196-12201.
[15] 张庆林, 赵 艳, 李晓薇, 等. 大豆硬脂酸-ACP脱饱和酶基因启动子的克隆及其表达活性分析[J]. 作物学报, 2011, 37(7): 1205-1211.
[16] Rossak M, Smith M, Kunst L. Expression of the FAE1 gene and FAE1 promoter activity in developing seeds of Arabidopsis thaliana [J]. Plant Molecular Biology, 2001, 46(6): 717-725.
[17] Kim H, Kim H U, Mi C S. Efficiency for increasing seed oil content using WRINKLED1 and DGAT1 under the control of two seed-specific promoters, FAE1 and Napin [J]. Journal of Plant Biotechnology, 2012, 39(4): 242-252.
[18] Zavallo D, Lopez Bilbao M, et al. Isolation and functional characterization of two novel seed-specific promoters from sunflower (Helianthus annuus L.) [J]. Plant Cell Reports, 2010, 29(3): 239-48.
[19] Kim M J, Kim H, Shin J S, et al. Seed-specific expression of sesame microsomal oleic acid desaturase is controlled by combinatorial properties between negative cis-regulatory elements in the SeFAD2 promoter and enhancers in the 5'-UTR intron [J]. Molecular Genetics and Genomics, 2006, 276(4): 351-68.
[20] Yu Y H, Ginsberg H N. The role of acyl-CoA:diacylglycerol acyltransferase (DGAT) in energy metabolism [J]. Annals of Medicine, 2004, 36(4):252-261.
[21] Saha S, Enugutti B, Rajakumari S, et al. Cytosolic Triacylglycerol Biosynthetic Pathway in Oilseeds. Molecular Cloning and Expression of Peanut Cytosolic Diacylglycerol Acyltransferase [J]. Plant Physiology, 2006, 141(4): 1533-1543.
[22] Sunilkumar G, Connell J P, Smith C W, et al. Cotton α-globulin promoter: isolation and functional characterization in transgenic cotton, Arabidopsis, and tobacco [J]. Transgenic Research, 2002, 11(4): 347-59.
[23]Tanabe N, Tamoi M, Shigeoka S. The sweet potato RbcS gene (IbRbcS1) promoter confers high-level and green tissue-specificexpression of the GUS reporter gene in transgenic Arabidopsis [J]. Gene, 2015, 567(2): 244-50.
[24] Sunkara S, Bhatnagar-Mathur P, Sharma K K. Isolation and functional characterization of a novel seed-specific promoter region from peanut [J]. Applied Biochemistry and Biotechnology, 2014, 172(1): 325-339.
[25] 石 磊,苗利娟,齐飞艳,等. 花生Δ9-硬脂酰-ACP脱氢酶基因启动子的克隆及功能分析[J]. 作物学报, 2016, 42: 1629-1637.
[26] 白泽涛, 柴国华, 石 磊, 等. 油菜毛状体发育相关基因GLABRA2启动子的克隆与功能验证[J]. 农业生物技术学报, 2010, 18(2): 210-217.
[27] Boutrot F, Meynard D, Guiderdoni E, et al. The Triticum aestivum non-specific lipid transfer protein (TaLtp) gene family: comparative promoter activity of six TaLtp genes in transgenic rice [J]. Planta, 2007, 225(4): 843-62.
[28] Wang H, Han J, Kanagarajan S, et al. Trichome-specific expression of the amorpha-4,11-diene 12-hydroxylase (cyp71av1) gene, encoding a key enzyme of artemisinin biosynthesis in Artemisia annua, as reported by a promoter-GUS fusion [J]. Plant Molecular Biology, 2013, 81(1-2): 119–138.
[29] Chu Y, Holbrook C C, Ozias-Akins P. Two alleles of control the high oleic acid trait in cultivated peanut [J]. Crop Science, 2009, 49(6): 2029-2036.
[30] Peng Q, Hu Y, Wei R, et al. Simultaneous silencing of FAD2 and FAE1 genes affects both oleic acid and erucic acid contents in Brassica napus seeds [J]. Plant Cell Reports, 2010, 29(4): 317-25.
[31] Mietkiewska E, Brost J M, Giblin E M, et al. Cloning and functional characterization of the fatty acid elongase 1 (FAE1) gene from high erucic Crambe abyssinica cv. Prophet [J]. Plant Biotechnology Journal, 2007, 5(5): 636-45.
[32] Jako C, Kumar A, Wei Y, et al. Seed-specific over-expression of an Arabidopsis cDNA encoding a diacylglycerol acyltransferaseenhances seed oil content and seed weight [J]. Plant Physiology, 2001, 126(2): 861-74.
[33] Tan H, Yang X, Zhang F, et al. Enhanced seed oil production in canola by conditional expression of Brassica napus LEAFYCOTYLEDON1 and LEC1-LIKE in developing seeds [J]. Plant Physiology, 2011, 156(3): 1577-88.
[34] Ellerström M, Stålberg K, Ezcurra I,et al. Functional dissection of a napin gene promoter: identification of promoter elements required for embryo and endosperm-specific transcription [J]. Plant Molecular Biology, 1996, 32(6): 1019-27.
[35] Zhang H, Jing R, Mao X. Functional characterization of TaSnRK2.8 promoter in response to abiotic stresses by deletionanalysis in transgenic Arabidopsis [J]. Frontiers in Plant Science, 2017, 8:1198.
[36] Li C, Wu K, Fu G, et al. Regulation of oleosin expression in developing peanut (Arachis hypogaea L.) embryos through nucleosome loss and histone modifications [J]. Journal of Experimental Botany, 2009, 60(15): 4371-82.
[37] Evrard A, Meynard D, Guiderdoni E, et al. The promoter of the wheat puroindoline-a gene (PinA) exhibits a more complex pattern of activity than that of the PinB gene and is induced by wounding and pathogen attack in rice [J]. Planta, 2007, 225(2): 287-300.
[38] 尹梦回, 董 静, 李先碧, 等. 烟草绒毡层特异启动子pTA29在棉花中的表达特性[J]. 作物学报, 2008, 34(12): 2092 - 209[39] Belostotsky D A, Meagher R B. A pollen-, ovule-, and early embryo-specific poly(A) binding protein from Arabidopsis c omplements essential functions in yeast [J]. The Plant Cell, 1996, 8(8): 1261-75.
[40] Luo K, Deng W, Xu S, et al. Functional analysis of the Arabidopsis thaliana poly(A) binding protein PAB5 gene promoter in Nicotiana tabacum [J]. Plant Cell Reports, 2008, 27(12): 1811-1819.
国家高技术研究与发展计划(863计划)(2013AA102602-6);河南省重大科技专项(161100111000);国家现代农业产业技术体系项目(CARS-13);河南省现代农业产业技术体系项目(S2012-5)
/
〈 |
|
〉 |