花生苗期干旱处理后转录和代谢通路分析

万丽云,苏 威&,李 蓓,雷 永,晏立英,康彦平,淮东欣,陈玉宁,姜慧芳,廖伯寿*

中国油料作物学报 ›› 2018, Vol. 40 ›› Issue (3) : 335.

PDF(6993 KB)
欢迎访问《中国油料作物学报》, 2025年5月1日 星期四
PDF(6993 KB)
中国油料作物学报 ›› 2018, Vol. 40 ›› Issue (3) : 335. DOI: 10.7505/j.issn.1007-9084.2018.03.004
遗传育种

花生苗期干旱处理后转录和代谢通路分析

  • &同等贡献作者,万丽云,助理研究员,主要从事植物逆境分子生物学研究, #br# E-mail:wanliyun@caas.cn #br# 苏 威,主要从事作物遗传育种研究,E-mail:sujuzi@139.com
作者信息 +

Molecular analysis of formation of drought tolerance traits in peanut

Author information +
文章历史 +

摘要

为解析花生耐旱性的调控基础,本研究通过对10个不同的花生材料苗期进行干旱-复水实验,结合转录组分析,探讨了干旱条件下不同花生材料抵御干旱胁迫的分子机制。研究结果显示,来源于非洲的花生材料Waliyar Tiga耐旱性最强,其次是kQ044抗青、中花16和早花生,干旱敏感的材料为狮头企、山花13、ICGV86745以及丰花2号;耐旱及干旱敏感材料的根冠比存在显著差异,耐旱材料的根冠比平均值为35.0%,干旱敏感材料的根冠比平均值为15.26%。早花生和中花16的根冠比最大。转录组结果表明抗感材料的差异表达基因主要富集在氧化磷酸化、光合作用和植物代谢途径;通过差异基因富集分析发现,耐旱材料在干旱条件下生长素应答途径基因的表达明显弱于敏感材料。生理和转录组的结果表明耐旱材料利用发达的根系系统、能量代谢的提升、次生代谢的加强和生长的抑制四个方面共同应对干旱胁迫。抗旱材料中花16和Waliyar Tiga在干旱条件下均具有较强的光合作用和氧化磷酸化的能力,中花16的根冠比显著大于Waliyar Tiga,但其耐旱性不及Waliyar Tiga,推测可能源于其较大的叶面积导致更多的叶面水分散失,从而使其耐旱能力低于Waliyar Tiga。

Abstract

In order to elucidate the regulating basis of drought tolerance in peanut, the experiments of drought and re-water after drought were carried out on 10 different peanut accessions, combined with the transcriptome to analysis the regulation mechanism of drought resistance of different peanut lines. Waliyar Tiga, which was collected from Africa,showed the best drought tolerance, followed by kQ044kangqing, Zhonghua 16 and Zaohuasheng. The physiological results showed that there were significant differences in root/shoot ratio between drought-tolerant and drought-sensitive peanuts. Transcriptome analysis demonstrated that differential expressed genes between drought tolerant and susceptible peanut lines were obviously enriched in oxidative phosphorylation, photosynthesis and secondary metabolites pathways; the genes expression of auxin signal pathway in drought-tolerant peanuts lines were significantly lower than that in the susceptible ones. The physiological and transcriptome data demonstrated that enlarged root system, enhanced energetic, secondary metabolism and the inhibition of growth were the four aspects contributing to drought stress tolerance in peanut. Both Zhonghua 16 and Waliyar Tiga have vigorous root and energetic metabolism, and the root\shoot ratio was even larger in Zhonghua 16 than Waliyar Tiga, the reason for the conflict could be caused by the larger leaf area which resulted greater water loss. This study provided a theoretical basis for drought-tolerant peanuts breeding, and provided a way to further study drought tolerance regulation mechanism of peanut.

关键词

花生 / 耐旱 / 转录组 / 根系

Key words

 peanut / drought tolerance / transcriptome / root system

引用本文

导出引用
万丽云,苏 威&,李 蓓,雷 永,晏立英,康彦平,淮东欣,陈玉宁,姜慧芳,廖伯寿* . 花生苗期干旱处理后转录和代谢通路分析[J]. 中国油料作物学报, 2018, 40(3): 335 https://doi.org/10.7505/j.issn.1007-9084.2018.03.004
WAN Li-yun, SU Wei, LI Bei, LEI Yong, YAN Li-ying, KANG Yan-ping, HUAN Dong-xin, CHENG Yu-ling, JIANG Hui-fang, LIAO Bo-shou,*. Molecular analysis of formation of drought tolerance traits in peanut[J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2018, 40(3): 335 https://doi.org/10.7505/j.issn.1007-9084.2018.03.004

参考文献

[1] 万书波,中国花生栽培学[M].上海:上海科技出版社,2003.1-4.

[2] 孙大容,花生育种学[M].北京:中国农业出版社,1998.256-275.

[3] Zhang Q, Bartels D, Varshney R. Molecular responses to dehydration and desiccation in desiccation-tolerant angiosperm plants[J]. J Exp Bot, 2018, doi: 10.1093/jxb/erx489.

[4] Choudhury F K, Rivero R M, Blumwald E, et al. Reactive oxygen species, abiotic stress and stress combination[J]. Plant J, 2017,90(5):856-867.

[5] Wang X L, Wang H W, Liu S X, et al.Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings[J]. Nat Genet,2016,48(10):1233.

[6] Huang X Y, Chao D Y, Gao J P, et al. A previously unknown zinc finger protein, DST, regulates drought and salt tolerance in rice via stomatal aperture control[J].Genes Dev,2009, 23(15):1805-1817.

[7] Cui L G, Shan J X, Shi M, et al. DCA1 Acts as a Transcriptional Co-activator of DST and Contributes to Drought and Salt Tolerance in Rice[J]. PLoS Genet,2015,11(10):e1005617.

[8] Du H, Huang F, Wu N, et al. Integrative regulation of drought escape through ABA-dependent and -independent pathways in rice[J]. Mol Plant,2018,11(4):584-597.

[9] Hu H, Dai M, Yao J, et al. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice[J]. Proc Natl Acad Sci U S A,2006, 103(35):12987-12992.

[10] Lavenus J, Goh T, Roberts I, et al. Lateral root development in Arabidopsis: fifty shades of auxin[J]. Trends Plant Sci,2013,18(8):450-458.

[11] Dietrich D. Hydrotropism - How Roots Search for Water [J]. J Exp Bot 2018.

[12] Koolachart R, Jogloy S, Vorasoot N, et al. Rooting traits of peanut genotypes with different yield responses to terminal drought[J].Field Crops Research,2013, 149(2):366-378.

[13] 厉广辉,万勇善,刘风珍,等. 不同抗旱性花生品种根系形态及生理特性[J].作物学报,2014,40( 03):531-541.

[14] Puppala N, Xavier A, Garg V, et al. Next generation sequencing approaches for understanding genetic mechanism of drought tolerance in Valencia Peanut[A].2017, Interdrought-V, IDT9-064.

[15] Liu X, Li L, Li M, et al. AhGLK1 affects chlorophyll biosynthesis and photosynthesis in peanut leaves during recovery from drought[J]. Sci Rep,2018,8 (1):2250.

[16] Liu S, Li M, Su L, et al. Negative feedback regulation of ABA biosynthesis in peanut (Arachis hypogaea): a transcription factor complex inhibits AhNCED1 expression during water stress[J].Sci Rep,2016,6:37943.

[17] Patel KG, Thankappan R, Mishra GP, et al.Transgenic peanut (Arachis hypogaea L.) overexpressing mtlD gene showed improved photosynthetic, physio-biochemical, and yield-parameters under soil-moisture deficit stress in lysimeter system[J]. Front Plant Sci,2017,8:1881.

[18] Kiranmai K, Lokanadha Rao G, Pandurangaiah M, et al. A Novel WRKY Transcription Factor, MuWRKY3 (Macrotyloma uniflorum Lam. Verdc.) Enhances Drought Stress Tolerance in Transgenic Groundnut (Arachis hypogaea L.) Plants[J]. Front Plant Sci,2018, 9:346.

[19] Sarkar T, Thankappan R, Kumar A, et al. Stress inducible expression of AtDREB1A transcription factor in transgenic peanut (Arachis hypogaea L.) conferred tolerance to soil-moisture deficit Stress[J]. Front Plant Sci,2016,28(7);935.

[20] Kim D, Langmead B, Salzberg S L. HISAT: a fast spliced aligner with low memory requirements.[J]. Nature Methods, 2015, 12(4):357-360.

[21] Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J].Genome Biology,2014,15(12):550.

[22] Mroue S, Simeunovic A, Robert H S. Auxin production as an integrator of environmental cues for developmental growth regulation[J]. J Exp Bot,2018,69(2):201-212.

[23] Lou Q, Chen L, Mei H, et al. Root transcriptomic analysis revealing the importance of energy metabolism to the development of deep roots in rice[J]. Front Plant Sci, 2017 ,8:1314.

[24] 翟 中,王喜忠,丁明孝. 细胞生物学[M].北京;高等教育出版色,2003.207-221.

[25] 王碎抗. OsMOGS参与水稻N-glycan形成和生长素介导的根系发育[D].杭州:浙江大学,2013.

基金

国家自然科学基金(31461143022);国家花生产业技术体系(CARS-14)

PDF(6993 KB)

1438

Accesses

0

Citation

Detail

段落导航
相关文章

/