碱蓬转录组分析及油脂合成相关基因表达模式

高羽荞,闫博巍,赵 莹,王 枫,董洁静,贺 琳,赵长江,李佐同*,徐晶宇*

中国油料作物学报 ›› 2018, Vol. 40 ›› Issue (6) : 801.

PDF(4128 KB)
欢迎访问《中国油料作物学报》, 2025年5月11日 星期日
PDF(4128 KB)
中国油料作物学报 ›› 2018, Vol. 40 ›› Issue (6) : 801. DOI: 10.7505/j.issn.1007-9084.2018.06.009
遗传育种

碱蓬转录组分析及油脂合成相关基因表达模式

  • 高羽荞(1992-),女,汉族,硕士研究生,主要从事植物分子生物学,E-mail: gaoyuqiao568@163.com #br#
作者信息 +

Transcriptome analysis of Suaeda salsa and expression profiles of genes related to oil synthesis

Author information +
文章历史 +

摘要

碱蓬(Suaeda salsa)籽粒具有较高的含油量及丰富的不饱和脂肪酸,作为潜在的特种油料作物具有极高的开发和利用价值。为了全面研究碱蓬中油脂合成相关基因的构成及表达模式,本文利用Illumina HiSeq 2000高通量测序平台对碱蓬根、叶和发育期种子进行转录组检测和分析,筛选碱蓬发育期种子和叶片转录组中参与油脂合成途径的关键脂类基因,并对其差异表达模式进行了比较分析。本研究测序共计产出106 647条Unigenes,通过与各蛋白数据库比对,其中76 755条Unigenes成功获得了功能注释。共有45个Unigenes编码参与脂肪酸(FA)合成的关键酶,其中25个Unigenes在发育期种子中上调表达;多个编码ACCase、KASⅢ和EAR等的Unigenes上调表达;且7个编码酰基载体蛋白去饱和酶(SAD)的Unigenes中有5个在发育期种子中显著上调,可能与碱蓬油脂中不饱和脂肪酸的生成相关。共有30个Unigenes编码参与三酰甘油(TAG)合成的关键酶,其中16个Unigenes在发育期种子中上调表达,包括多个编码GPAT和DGAT的Unigenes。本研究对解析碱蓬脂类代谢途径的调控模式及发掘参与碱蓬油脂合成的关键基因具有重要的意义和参考价值。

Abstract

Suaeda salsa(Suaeda salsa L.) seeds have high oil content and rich unsaturated fatty acid composition, so they have great potential for development and utilization as special oil crop. In this study, the Illumina HiSeq 2000 high-throughput sequencing platform was used to detect and analyze the transcriptome of Suaeda salsa. 106647 Unigenes were produced, and 76755 of them were functionally annotated by blasting the online protein databases. In order to comprehensively study the classification and expression pattern of genes related to lipid synthesis in Suaeda salsa, the key genes involved in lipid synthesis in seed and leaf transcriptomes of Suaeda salsa were screened and their differential expression profiles were comparatively analyzed. A total of 45 Unigenes encoding key enzymes involved in fatty acid (FA) biosynthesis were obtained, of which 25 Unigenes were up-regulated in seeds of developing stage. In comparison to leaves, a number of Unigenes encoding ACCase, KAS III and EAR, and 5 out of 7 Unigenes encoding acyl carrier protein desaturase (SAD) were significantly up-regulated in developing seeds, which might be related to the formation of unsaturated FA in Suaeda salsa seeds oil. A total of 30 Unigenes encoding key enzymes involved in the synthesis of triacylglycerols (TAGs). Among them, 16 Unigenes were up-regulated in developing seeds, and multiple Unigenes encoding GPAT and DGAT were significantly upregulated. This study could make great contribution to the analysis of the regulation of lipid metabolism pathways and the exploration of the key genes involved in the lipid synthesis of Suaeda salsa.

关键词

碱蓬(Suaeda salsa L.) / 转录组 / 脂肪酸 / 三酰甘油 / 基因表达

Key words

Suaeda salsa(Suaeda salsa L.) / transcriptome / fatty acids / triglycerol / gene expression

引用本文

导出引用
高羽荞,闫博巍,赵 莹,王 枫,董洁静,贺 琳,赵长江,李佐同*,徐晶宇* . 碱蓬转录组分析及油脂合成相关基因表达模式[J]. 中国油料作物学报, 2018, 40(6): 801 https://doi.org/10.7505/j.issn.1007-9084.2018.06.009
GAO Yu-qiao, YAN Bo-wei, ZHAO Ying, WANG Feng, DONG Jie-jing, HE Lin, ZHAO Chang-jiang, LI Zuo-tong*, XU Jing-yu* . Transcriptome analysis of Suaeda salsa and expression profiles of genes related to oil synthesis[J]. CHINESE JOURNAL OF OIL CROP SCIENCES, 2018, 40(6): 801 https://doi.org/10.7505/j.issn.1007-9084.2018.06.009

参考文献

[1] 李洪山,封功能,邵 荣. 盐地碱蓬作物化利用探究进展[J].现代园艺,2017(8):126-127.
[2] 崔素萍,左豫虎,魏永全.大庆盐碱地角碱蓬籽粒含油量及其脂肪酸组成研究[J].中国粮油学报,2010,25(1):74-77.
[3] 牟书勇,程争鸣,包 群. GC/MS法分析囊果碱蓬种子油中脂肪酸组成[J]. 干旱区研究,2006,23(3):475-477.
[4] Jin H, Ma Y, Li L, et al. Rapid and non-destructive determination of oil content of peanut (Arachis hypogaea L.) using hyperspectral imaging analysis[J]. Food Anal Method, 2016, 9(7):2060-2067.
[5] 谷克仁,于小宝. 玉米含油量及脂肪酸的分析[J]. 粮油食品科技, 2012, 20(4):21-22.
[6] Gan L, Zhang C, Wang X, et al. Proteomic and comparative genomic analysis of two Brassica napus Lines differing in oil content[J]. J Proteome Res, 2013, 12(11):4965-78.
[7] 魏晋梅,罗玉柱,曹禄兴. GC-MS法分析橄榄油中的脂肪酸[J]. 中国食品工业, 2011(6):80-81.
[8] 孟桂元,孙 方,周 静. 亚麻种质脂肪酸成分差异及其相关性研究[J]. 分子植物育种, 2016(9):2502-2508.
[9] Sood A, Chauhan R S. Regulation of FA and TAG biosynthesis pathway genes in endosperms and embryos of high and low oil content genotypes of Jatropha curcas L[J]. Plant Physiol Biochem, 2015, 94:253-267.
[10] Chen H, Gu Z, Zhang H, et al. Fatty acid desaturase used in the biosynthesis of long chain omega-3 polyunsaturated fatty acids[P]:US 9315836 B2, 2016.
[11] Xuan W Y, Zhang Y, Liu Z Q, et al. Molecular cloning and expression analysis of a novel BCCP subunit gene from Aleurites moluccana[J]. Genet Mol Res, 2015, 14(3):9922-31.
[12] González Thuillier I, VenegasCalerón M, Sánchez R. Sunflower (Helianthus annuus) fatty acid synthase complex: β-hydroxyacyl-[acyl carrier protein] dehydratase genes[J]. Planta, 2016, 243(2):397-410.
[13] Rodríguez M F R, Alicia S G, Salas J J, et al. Characterization of soluble acyl-ACP desaturases from Camelina sativa, Macadamia tetraphylla and Dolichandra unguis-cati[J]. J Plant Physiol, 2015, 178:35-42.
[14] Chen G, Chen J, He Q, et al. Functional expression of the Arachis hypogaea L. Acyl-ACP thioesterases AhFatA and AhFatB enhances fatty acid production in Synechocystis sp. PCC6803[J]. Energies, 2017,10.
[15] Jessen D, Roth C, Wiermer M, et al. Two activities of long-chain acyl-coenzyme A synthetase are involved in lipid trafficking between the endoplasmic reticulum and the plastid in Arabidopsis[J]. Plant Physiol, 2015, 167(2):351-66.
[16] Cagliari A, Margis R, Maraschin F D S, et al. Biosynthesis of Triacylglycerols (TAGs) in plants andalgae[J]. Int J Plant Biol, 2011, 2(1):12-22.
[17] Chen G Q, Harrie V E, Jose M M, et al. Expression of Castor LPAT2 enhances ricinoleic acid content at the sn-2 position of triacylglycerols in Lesquerella seed[J]. Int J Mol Sci, 2016, 17(4).
[18] Kim H J, Silva J E, Iskandarov U, et al. Structurally divergent lysophosphatidic acid acyltransferases with high selectivity for saturated medium chain fatty acids from Cuphea seeds[J]. Plant J, 2015, 84(5):1021-1033.
[19] César B, Juliette J, Block M A. Importance of phosphatidylcholine on the chloroplast surface[J]. Prog Lipid Res, 2017, 65:12-23
[20] Gibellini F, Smith T K. The Kennedy pathway--De novo, synthesis of phosphatidylethanolamine and phosphatidylcholine[J]. IUBMB Life, 2010, 62(6):414-428.
[21] Petrie J R, Vanhercke T, Shrestha P, et al. Correction: Recruiting a new substrate for triacylglycerol synthesis in plants: the monoacylglycerol acyltransferase pathway[J]. Plos One, 2012, 7(4):e35214.
[22] Wang Y Q, Peng D, Zhang L, et al. Overexpression of SsDGAT2 from Sapium sebiferum (L.) roxb increases seed oleic acid level in Arabidopsis[J]. Plant Mol Biol Rep, 2016, 34(3):638-648.
[23] Jang Y E, Kim M Y, Shim S, et al. Gene expression profiling for seed protein and oil synthesis during early seed development in soybean[J]. Genes Genom, 2015, 37(4):409-418.
[24] Song J, Wang B. Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model[J]. Ann Bot, 2015, 115(3):541.
[25] 陈然然,邵 荣,杨 剑. 碱蓬籽油脂的超临界CO2提取工艺优化[J]. 化学工程师, 2015, 29(1):61-64.
[26] 于海芹,张天柱,魏春雁. 3种碱蓬属植物种子含油量及其脂肪酸组成研究[J]. 西北植物学报, 2005,25(10):2077-2082.
[27] 马秀灵,王丽萍,张 慧. 碱蓬cDNA表达文库的构建[J]. 西北植物学报, 2002, 22(6):1289-1294.
[28] Davis M S, Solbiati J, Jr C J. Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli[J]. J Biolog Chem, 2000, 275(37):28593.
[29] Wang F, Wu G, Lang C, et al. Influence on brassica seed oil content by transformation with heteromeric Acetyl-CoA Carboxylase (ACCase) gene[J]. Mol Plant Breeding, 2017.
[30] 李 璐,梁 倩, 安 茜,等. 紫苏β-酮脂酰ACP合成酶基因家族生物信息学分析[J].山西农业科学,2017,45(3):321-324.
[31] Du H, Min H, Hu J, et al. Modification of the fatty acid composition in Arabidopsis and maize seeds using a stearoyl-acyl carrier protein desaturase-1 (ZmSAD1) gene[J]. BMC Plant Biol, 2016, 16:137.
[32] Chen G, Peng Z Y, Shan L, et al. Cloning of acyl-ACP thioesterase FatA from Arachis hypogaea L. and its expression in Escherichia coli[J]. J Biomed Biotechnol, 2012(2):161-177.
[33] Zheng X, Huang Q, Tan X. Up-regulating a chloroplast long chain fatty acyl CoA synthetase(LACS) leads elevating the chlorophyll B and increasing biomass in Brassica napus[C].2013全国植物生物学大会,2013.
[34] Liu F, Xia Y, Wu L, et al. Enhanced seed oil content by overexpressing genes related to triacylglyceride synthesis[J]. Gene, 2015, 557(2):163-171.
[35] Chandrasekaran U, Xu W, Liu A. Transcriptome profiling identifies ABA mediated regulatory changes towards storage filling in developing seeds of castor bean (Ricinus communis L.)[J]. Cell Biosci,2014, 4(1):33.
[36] Chen S, Lei Y, Xu X, et al. The peanut (Arachis hypogaea L.) gene AhLPAT2 increases the lipid content of transgenic Arabidopsis seeds[J]. Plos One, 2015, 10(8):e0136170.
[37] Ichihara K, Takahashi T, Fujii S. Diacylglycerol acyltransferase in maturing safflower seeds: its influences on the fatty acid composition of triacylglycerol and on the rate of triacylglycerol synthesis[J]. Biochim Biophys Acta, 1988, 958(1):125.
[38] Misra A, Khan K, Niranjan A, et al. Over-expression of JcDGAT1 from Jatropha curcas increases seed oil levels and alters oil quality in transgenic Arabidopsis thaliana[J]. Phytochemistry, 2013, 96(6):37.
[39] Chen Y, Cui Q, Xu Y, et al. Effects of tung oilseed FAD2 and DGAT2 genes on unsaturated fattyacid accumulation in Rhodotorula glutinis and Arabidopsis thaliana[J]. Mol Genet Genomics, 2015, 290(4):1605-1613.

基金

国家科技支撑计划子课题(2013BAD07B01-05);黑龙江省自然基金面上项目(C201446);黑龙江八一农垦大学校内培育重点课题(XA2014-01);黑龙江八一农垦大学引进人才科研启动计划课题(XDB2012-04)
PDF(4128 KB)

1357

Accesses

0

Citation

Detail

段落导航
相关文章

/