大豆短日照诱导下新ESTs序列的筛选和功能推测

赵琳,高阳,段莹莹,李永光,陈李淼,郝迪萩,罗秋兰,李文滨

中国油料作物学报 ›› 2009, Vol. 31 ›› Issue (4) : 460-464.

PDF(1225 KB)
欢迎访问《中国油料作物学报》, 2025年6月19日 星期四
PDF(1225 KB)
中国油料作物学报 ›› 2009, Vol. 31 ›› Issue (4) : 460-464.
遗传育种

大豆短日照诱导下新ESTs序列的筛选和功能推测

  • 赵琳,高阳,段莹莹,李永光,陈李淼,郝迪萩,罗秋兰,李文滨*
作者信息 +
文章历史 +

摘要

本研究对大豆短日照诱导的基因表达差异进行了比较基因组分析,在细胞分子水平上从基因差异表达的角度研究短日照诱导衰老过程中基因转录物丰度的变化,探索大豆衰老的复杂机制。利用本实验室已经获得的抑制性消减杂交第二次PCR扩增产物重新构建新的cDNA文库,继续筛选差异表达的ESTs。利用BLAST 软件在GenBank 数据库进行序列相似性比对,发现28个与暗诱导相关的差异表达新ESTs,归类并推测其参与机体暗适应上调表达的蛋白质功能,为进一步分离暗处理诱导表达的基因,揭示短日照加速衰老的作用机理提供基础数据。

关键词

大豆 / 衰老 / 短日照 / 代谢

引用本文

导出引用
赵琳,高阳,段莹莹,李永光,陈李淼,郝迪萩,罗秋兰,李文滨. 大豆短日照诱导下新ESTs序列的筛选和功能推测
[J]. 中国油料作物学报, 2009, 31(4): 460-464
中图分类号: Q945.48   

参考文献

1] Buchanan-Wollaston V, Page T, Harrison E, et al. Comparative transcriptome analysis reveals significant differences in gene expression and signaling pathways between developmental and dark/starvation-induced senescence in Arabidopsis [J]. Plant J, 2005, 42 (4):567-585.
[2] Buchanan-Wollaston V, Earl S, Harrison E, et al. The molecular analysis of leaf senescence-a genomics approach [J]. Plant Biotechnol J, 2003, 1(1):3-22.
[3] Stessman D, Miller A, Spalding M, et al. Regulation of photosynthesis during Arabidopsis leaf development in continuous light [J]. Photosynthesis Res, 2002, 72(1):27-37.
[4] Iqbal M J, Yaegashi S, Njiti V N, et al. Resistance locus pyramids alter transcript abundance in soybean roots inoculated with Fusarium solani f.sp. glycines [J]. Mol Genet Genomic, 2002, 268(3):407-417.
[5] 王省芬, 田海燕, 马峙英, 等. 黄萎病菌诱导下陆地棉抗病品种SSH文库的构建[J]. 棉花学报, 2008, 20(1): 3-8.
[6]赵琳,罗秋兰,杨春亮, 等. 大豆在暗诱导条件下差异表达cDNA文库的构建及分析[J]. 大豆科学, 2007, 26(2):134-139.
[7] Ciechanover A. The ubiquitin proteasome proteolytic pathway [J]. Cell, 1994, 79(1):13-21.
[8] Park J H, Oh S A, Kim Y H, et al. Differential expression of senescence-associated mRNAs during leaf senescence induced by different senescence-inducing factors in Arabidopsis [J]. Plant Mol Biol, 1998, 37(3):445-454.
[9] Parrott D, Yang L, Shama L, et al. Senescence is accelerated, and several proteases are induced by carbon “feast” conditions in barley (Hordeum vulgare L.) leaves [J]. Planta, 2005, 222(6):989-1000.
[10] Gottesman S, Maurizi M R. Regulation by proteolysis: energy dependent proteases and their targets [J]. Microbiol Rev, 1992, 56(4):592-621.
[11] Brouquisse R, Gaudillère J P, Raymond P. Inductions of a carbon-starvation-related proteolysis in whole maize plants submitted to light dark cycles and to extended darkness [J]. Plant Physiol, 1998, 117(4):1281-1291.
[12] Smith S M, Fulton D C, Chia T, et al. Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in Arabidopsis leaves [J]. Plant Physiol, 2004, 136(1):2687-2699.
[13] Fujiki Y, Ito M, Nishida I, et al. Leucine and its keto acid enhance the coordinated expression of genes for branched-chain amino acid catabolism in Arabidopsis under sugar starvation [J]. FEBS Lett, 2001, 499(1):161-165.
[14] Enrico M, Markus K, Markus G, et al. Multifunctionality of plant ABC transporter - more than just detoxifiers [J]. Planta, 2002, 214(3), 345-355.
[15] Cosgrove D J. Loosening of plant cell walls by expansins [J]. Nature, 2000, 407(9):321-326.
[16] Smith D L, Abbott J A, Gross KC. Down-regulation of tomato β-galactosidase 4 results in decreased fruit softening [J]. Plant Physiol, 2002, 129(4):1755-1762.
[17] Larsen K. Molecular cloning and characterization of cDNAs encoding cinnamoyl CoA reductase (CCR) from barley (Hordeum vulgare) and potato (Solanum tuberosum) [J]. J Plant Physiol, 2004, 161(1):105-112.


PDF(1225 KB)

2994

Accesses

0

Citation

Detail

段落导航
相关文章

/